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Université Montpellier II,

Pl. E. Bataillon, 34095 Montpellier, France
cNHETC, Department of Physics and Astronomy, Rutgers University,

136 Frelinghuysen Road, Piscataway, NJ 08855-0849, U.S.A.

E-mail: Vladimir.FATEEV@lpta.univ-montp2.fr,litvinov@itp.ac.ru

Abstract: Two-dimensional sl(n) quantum Toda field theory on a sphere is considered.

This theory provides an important example of conformal field theory with higher spin

symmetry. We derive the three-point correlation functions of the exponential fields if one

of the three fields has a special form. In this case it is possible to write down and solve

explicitly the differential equation for the four-point correlation function if the fourth field

is completely degenerate. We give also expressions for the three-point correlation functions

in the cases, when they can be expressed in terms of known functions. The semiclassical and

minisuperspace approaches in the conformal Toda field theory are studied and the results

coming from these approaches are compared with the proposed analytical expression for

the three-point correlation function. We show, that in the framework of semiclassical and

minisuperspace approaches general three-point correlation function can be reduced to the

finite-dimensional integral.
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1. Introduction

It is well known, that the problem of integrating over all metrics modulo diffeomorphism on

a two-dimensional surface can be reduced to studying the quantum Liouville field theory [1].

First attempts to solve this theory were transformed into a beautiful and complete theory

known as the two-dimensional conformal field theory [2]. This theory is exactly solvable

because the algebra of generators of the conformal symmetry in two dimensions, which

governs the theory, is infinite dimensional. It coincides with the Virasoro algebra, which

is the central extension of the algebra of vector fields on a circle. It is well known, that

Virasoro algebra can be obtained as a quantum Drinfeld-Sokolov reduction of the affine

ŝl(2) algebra. The same construction can be generalized to the case of general affine simple

Lie algebra ĝ. As a result, after reduction one obtains associative algebra (W algebra), as

an additional infinite dimensional symmetry consistent with conformal symmetry, i. e. as

a direct extension of the Virasoro algebra [3]. Two-dimensional Toda field theory (TFT)

associated with simple Lie algebra g generalizes Liouville field theory in a similar sense.
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The algebra of the generators of the symmetry, which governs TFT dynamics, coincides

with W algebra (associated with the corresponding Lie algebra g).

Due to its geometric interpretation [4, 5], TFT is relevant in the investigation of the

W strings and W gravity (see for example refs. [6, 7]). It also provides an important

example of non-rational conformal field theory with higher spin symmetry and hence has

its own interest. This higher spin symmetry manifests itself also in rational conformal

field theories, which describe the critical behavior of many interesting statistical systems,

like for example Zn Ising models (parafermionic CFT [8]), tricritical Ising and Z3 Potts

models, Ashkin-Teller models and also in the large variety of integrable statistical systems

studied and solved in refs. [9, 10]. The results derived in conformal Toda field theory can

be applied to study of the short-distance asymptotics of the correlation functions in the

massive integrable quantum field theory, which is known as affine Toda field theory, as well

as to calculation of the vacuum expectation values of the exponential fields in this theory

(see for example refs. [11 – 13]). As conformal TFTs appear by the quantum Hamiltonian

reduction of the WZNW models (see for example [14]), they can be also applied to study

WZNW models with non-compact Lie algebras.

There has been much progress in understanding Liouville field theory (sl(2) TFT) and

hence in the conformal field theory itself in the middle of 90’s. In particular, the three-

point correlation function was found explicitly for arbitrary exponential fields [15 – 18].

Known three-point correlation functions, together with the fact, that conformal blocks are

completely determined by the conformal symmetry, solve the conformal bootstrap problem

in Liouville field theory.

Conformal Toda field theory is much more complicated than the Liouville field theory.

One of the main reasons is that in TFT we need in general case more data to solve the

conformal bootstrap problem [19]. In particular, this difficulty manifests itself in the fact

that contrary to the Liouville field theory it is impossible to write down the differential

equation for the four-point correlation function, which contains one completely degenerate

and three arbitrary fields [19, 20]. In Liouville field theory it allows to write down func-

tional relation for the general three-point correlation function, which in some domain of

parameters has a unique solution (see for example [21]). In TFT this procedure fails (see

section 3 for details). It means that other methods should be applied. It is interesting,

that the difficulty of such a type appears already at the classical level, where the problem

of finding the solution to the sl(n) classical Toda equation for n > 2 with three singular

points (which determines so called ”heavy” semiclassical limit of the three-point correlation

function) reduces to the problem of studying Fuchsian ordinary differential equation with

accessory parameters (see section 4). Accessory parameters are absent in the Liouville case

(sl(2) TFT) and this is the reason why this theory is rather simpler.

This paper is the first of two papers, devoted to study the correlation functions in

the sl(n) TFT, which can be found analytically (may be in terms of finite dimensional

integrals). It is organized as follows: in section 2 we briefly remind some basic facts

about conformal TFT and propose an analytical expression for the three-point correlation

function of the exponential fields in the case, when parameters of one of the field take

the special values (see eq. (2.39)). We give also several another examples of correlation
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functions, which can be expressed in terms of known functions. In section 3 we present

the derivation of the proposed three-point correlation function (2.39) by using the special

properties of the operator algebra of degenerate fields. In sections 4 and 5 the semiclassical

analysis of the theory is developed. In the section 4 we study the case, when all exponential

fields in correlation function are ”heavy” (i.e. have parameters proportional to the opposite

coupling constant) and in the section 5 we study the case, when all exponential fields are

”light” (i.e. have parameters proportional to the coupling constant). In section 6 we

study the minisuperspace approach to the sl(n) TFT. We show, that in the case of light

exponential fields, as well as in the minisuperspace limit, three-point correlation function

can be expressed in terms of finite dimensional integrals. In both cases, semiclassical and

minisuperspace asymptotic is in complete agreement with the proposed quantum results.

The calculation details and useful formulae are given in the appendices.

In the second part of this paper [22] we will give more detailed description of the cor-

relation functions in conformal TFT, which can be expressed in terms of finite dimensional

Coulomb integrals.

2. Toda field theory

We start by recalling some basic facts and notions. The Lagrangian of the sl(n) conformal

TFT has the form

L =
1

8π
(∂aϕ)2 + µ

n−1∑

k=1

eb(ek ,ϕ), (2.1)

here ϕ is the two-dimensional (n − 1) component scalar field ϕ = (ϕ1 . . . ϕn−1), b is the

dimensionless coupling constant, µ is the scale parameter called the cosmological constant

and (ek, ϕ) denotes the scalar product, where vectors ek are the simple roots of the Lie

algebra sl(n) with the matrix of the scalar products Kij = (ei, ej) (Cartan matrix)

Kij =




2 −1 0 . . . . . . 0

−1 2 −1 . . . . . . 0

0 −1 . . . . . . . . . . . . . .

. . . . . . . . . . . . . . −1 0

0 . . . . . . −1 2 −1

0 . . . . . . 0 −1 2




. (2.2)

In the following we will use standart for the two-dimensional physics complex notations:

z = x1 + ix2, z̄ = x1 − ix2, ∂ =
∂

∂z
, ∂̄ =

∂

∂z̄
(2.3)

and introduce the notation for the measure

d2z = dx1dx2. (2.4)

Total normalization of the Lagrangian (2.1) is chosen in such a way, that

ϕi(z, z̄)ϕj(0, 0) = −δij log |z|2 + . . . at z → 0. (2.5)

– 3 –
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In is useful to write TFT action explicitly in reference metric ĝab on a surface

ATFT =

∫ (
1

8π
ĝab(∂aϕ, ∂bϕ) +

(Q,ϕ)

4π
R̂ + µ

n−1∑

k=1

eb(ek ,ϕ)

)
√

ĝ d2x, (2.6)

here R̂ is the scalar curvature of the background metric.1 If the background charge Q is

related with the parameter b as

Q =

(
b +

1

b

)
ρ (2.7)

with ρ being a Weyl vector (half of the sum of all positive roots), then the theory (2.6)

is conformaly invariant.2 Moreover it ensures higher-spin symmetry: there are n − 1

holomorphic currents Wk(z) with the spins k = 2, 3, . . . , n, which are expressed through

the field ϕ via the Miura transformation [23]

n−1∏

i=0

(q∂ + (hn−i, ∂ϕ)) =
n∑

k=0

Wn−k(z)(q∂)k , (2.8)

where

q = b + 1/b (2.9)

and vectors hk are the weights of the first fundamental representation π1 of the Lie algebra

sl(n) with the highest weight ω1 (first fundamental weight)

hk = ω1 − e1 − · · · − ek−1. (2.10)

In particular, it follows from eq. (2.8), that the currents W0(z) = 1, W1(z) = 0 and the

current

W2(z) = T (z) = −1

2
(∂ϕ)2 + (Q, ∂2ϕ)

is the stress-energy tensor of the theory, which ensures local conformal invariance of TFT.

The currents Wk(z) form closed Wn algebra, which contains as subalgebra the Virasoro

algebra with the central charge

c = n − 1 + 12Q2 = (n − 1)(1 + n(n + 1)(b + b−1)2). (2.11)

This Wn algebra represents only the chiral part of the algebra of generators of the symme-

try, which governs the theory. Total algebra is a tensor product of the both holomorphic

and antiholomorphic algebras Wn ⊗ Wn.

Basic objects of conformal Toda field theory are the exponential fields parameterized

by a (n − 1) component vector parameter α

Vα = e(α,ϕ), (2.12)

1Bellow we consider mainly the case of sphere, in order to avoid the problem with moduli. It is useful

to choose the metric ĝab = δab everywhere except the north pole (z = ∞), where the curvature is located.

Such a choice prescribes the asymptotic ϕ = −Q log |z| + . . . at z → ∞.
2More strictly, it becomes to be invariant under the combined Weyl transformation: ĝab → Ω(x)ĝab and

ϕ → ϕ − Q log Ω(x).
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which are the spinless primary fields. They have the simple operator product expansion

(OPE) with the currents Wk(ξ). Namely,

Wk(ξ)Vα(z, z̄) =
w(k)(α)Vα(z, z̄)

(ξ − z)k
+ . . . , (2.13)

here . . . means the contribution of less singular terms. Similar OPE’s with antiholomorphic

currents W
k
(ξ̄) are also valid. The quantum numbers w(k)(α) possess the symmetry under

the action of the Weyl group W of the Lie algebra sl(n) (which is generated by reflections

in the hyperplanes perpendicular to the simple roots ek) [23]

w(k)(α) = w
(k)
ŝ (α) ≡ w(k)(Q + ŝ(α − Q)), ŝ ∈ W. (2.14)

In particular,

w(2)(α) = ∆(α) =
(α, 2Q − α)

2
(2.15)

is the conformal dimension of the field Vα. Equation (2.14) suggests the idea, that the

fields related via the action of the Weyl group should coincide up to a multiplicative factor.

One of the important properties of TFT is that it is really true

VQ+ŝ(α−Q) = Rŝ(α)Vα , (2.16)

where Rŝ(α) is the reflection amplitude, which was found in [24]

Rŝ(α) = A(Q + ŝ(α − Q))/A(α),

A(α) = (πµγ(b2))
(α−Q,ρ)

b

∏

e>0

Γ(1 − b(α − Q, e))Γ(−b−1(α − Q, e)). (2.17)

In eq. (2.17) the product goes over all positive roots.

Multipoint correlation functions of the exponential fields

〈Vα1(z1, z̄1) . . . Vαl
(zl, z̄l)〉 =

∫
[Dϕ]e−ATFTVα1(z1, z̄1) . . . Vαl

(zl, z̄l) (2.18)

are the main objects of the theory. One of the most important problems in TFT is to

find these quantities. This problem is nontrivial due to the exponential interaction term in

the Lagrangian (2.1). One can try naively to explore perturbation theory in cosmological

constant µ. However, pertubatively, correlation functions (2.18) are equal to zero unless

the ”on-shell” condition
l∑

j=1

αj + b
n−1∑

k=1

skek = 2Q (2.19)

with some non-negative integers sk is satisfied. Alternatively, one can perform zero mode

integration [25]. Namely, let us define a zero mode ϕ0 of the field ϕ: ϕ = ϕ0 + ϕ̃ with

the condition that
∫

d2 x ϕ̃ = 0. The integral in eq. (2.18) over the zero mode ϕ0 can be

transformed to the Euler integral. As a result, after integration we obtain

〈Vα1(z1, z̄1). . .Vαl
(zl, z̄l)〉 = (2.20)

1

bn−1

∫
[Dϕ̃]e−S0

[
n−1∏

k=1

Γ(−sk)

(
µ

∫
eb(ek ,ϕ̃)

)
sk

]
Vα1(z1, z̄1). . .Vαl

(zl, z̄l),
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with

sk =
(2Q − ∑

αj, ωk)

b
.

Here vectors ωk are the fundamental weights of the Lie algebra sl(n).3 Integration in

eq. (2.20) is performed in the theory of a free massless (n− 1) component scalar field with

the action

S0 =
1

8π

∫
(∂aϕ)2d2x.

Equation (2.20) has no meaning if all numbers sk are general. However in the resonance

situation, when all numbers sk are non-negative integers, the gamma functions in the right

hand side of eq. (2.20) have simple poles in each of the variables (2Q − ∑
αj , ωk) for

k = 1, . . . , n − 1 and we can treat the main residue in these poles (the residue in each of

these poles) as the corresponding free field integrals. Namely

res
(2Q−

P

αj ,ω1)=bs1

. . . res
(2Q−

P

αj ,ωn−1)=bsn−1

〈Vα1(z1, z̄1) . . . Vαl
(zl, z̄l)〉 = (2.21)

=
(−µ)s1+...sn−1

s1! . . . sn−1!
〈Vα1(z1, z̄1) . . . Vαl

(zl, z̄l)(Q1)
s1 . . . (Qn−1)

sn−1〉0,

here 〈. . . 〉0 means average over the free massless fields. In eq. (2.21) we have introduced

the notations for the so called screening charges

Qk =

∫
eb(ek ,ϕk)d2ξ, k = 1, . . . , n − 1. (2.22)

Correlation function in the r.h.s. of eq. (2.21) can be calculated using the Wick rules in the

free field theory together with integration over the position of all screening fields eb(ek ,ϕ).

Equation (2.21), which was obtained from the classical arguments, modifies in quantum

case. Namely, if the screening conditions

2Q −

l∑

j=1

αj , ωk


 = bsk + b−1s̃k (2.23)

are satisfied for any two sets (s1, . . . , sn−1) and (s̃1, . . . , s̃n−1) of non-negative integers, then

the correlation function (2.18) admits a pole in each of the variable (2Q −
∑

α, ωk) with

the main residue being expressed in terms of free field correlation function

res
(2Q−

P

αi,ω1)=bs1+b−1s̃1

. . . res
(2Q−

P

αi,ωn−1)=bsn−1+b−1s̃n−1

〈Vα1(z1, z̄1) . . . Vαl
(zl, z̄l)〉 =

=
(−µ)s1+...sn−1

s1! . . . sn−1!

(−µ̃)s̃1+...s̃n−1

s̃1! . . . s̃n−1!
× (2.24)

×〈Vα1(z1, z̄1) . . . Vαl
(zl, z̄l)(Q1)

s1 . . . (Qn−1)
sn−1(Q̃1)

s̃1 . . . (Q̃n−1)
s̃n−1〉0.

In eq. (2.24) we have introduced the notation for the dual screening charges

Q̃k =

∫
eb−1(ek,ϕk)d2ξ (2.25)

3They are defined as a dual basis to the simple roots (ei, ωj) = δij .
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and for the dual cosmological constant

µ̃ =
1

πγ(1/b2)

(
πµγ(b2)

)1/b2
. (2.26)

Operators Qk and Q̃k have an important property, that they commute with all generators

of the both holomorphic and antiholomorphic W algebras. In this paper we will consider

for simplicity the case, when all numbers s̃k = 0. It is reasonable to suppose, that the

screening condition (2.23) defines up to the Weyl transformation (2.14) all possible poles of

the correlation function (2.18), as a function of the parameters αk. One should emphasize,

that a simple pole in the correlation function (2.18) appears if at least one screening

condition (2.23) is satisfied.

Knowledge of two-point and three-point correlation functions of the primary fields

Vα is the first step for the calculation of the higher multipoint correlation functions of

the theory. In the sl(2) case (Liouville field theory), this knowledge together with the

statement, that conformal blocks are completely determined by the conformal symmetry,

allows us, in principle, to compute any multipoint correlation functions in this theory [2].

In the sl(n) TFT case for n > 2 the situation is more complicated and we need more data

(see for example [19]).

Two-point correlation function in TFT normalized by the condition

〈Vα(z)V2Q−α(0)〉 = |z|−4∆(α). (2.27)

All other non-zero two-point correlation functions can be obtained from this correlation

function by the Weyl reflection (2.16). For example

〈Vα(z)Vα∗(0)〉 =
R−1(α)

|z|4∆(α)
, (2.28)

here R(α) is the maximal refrection amplitude defined as

R(α) =
A(2Q − α)

A(α)
(2.29)

with A(α) given by eq. (2.17) and conjugated vector parameter α∗ defined as

(α, ek) = (α∗, en−k). (2.30)

Much more complicated object — three-point correlation function has standart coor-

dinate dependence due to the conformal invariance of the theory

〈Vα1(z1, z̄1)Vα2(z2, z̄2)Vα3(z3, z̄3)〉 =
C(α1, α2, α3)

|z12|2(∆1+∆2−∆3)|z13|2(∆1+∆3−∆2)|z23|2(∆2+∆3−∆1)
.

(2.31)

All non-trivial information about the operator algebra of the primary fields Vα of the model

is encoded in the constants C(α1, α2, α3). According to eq. (2.21) if the parameters α1, α2

and α3 satisfy the screening condition

α1 + α2 + α3 + bs1e1 + · · · + bsn−1en−1 = 2Q,

– 7 –
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function C(α1, α2, α3) will have a pole in each of the variables (2Q−α1 −α2 −α3, ωk) and

we can define the main residue in these poles in terms of Coulomb integral4

res
(2Q−

P

αi,ω1)=bs1

. . . res
(2Q−

P

αi,ωn−1)=bsn−1

C(α1, α2, α3) =

= (−πµ)s1+···+sn−1Is1...sn−1(α1, α2, α3) (2.32)

with

Is1...sn−1(α1, α2, α3) =

∫
dµs1(t1) . . . dµsn−1(tn−1) × (2.33)

×
n−1∏

k=1

D−2b2
sk

(tk)

sk∏

j=1

|t(j)k |−2b(α1,ek)|t(j)k − 1|−2b(α2,ek)

n−2∏

l=1

Ab2
slsl+1

(tl, tl+1),

here t
(j)
k is the coordinate of the j-th screening field eb(ek ,ϕ) and quantities Dsk

(tk) and

Aslsm(tl, tm) for l 6= m are defined as

Dsk
(tk) =

sk∏

i<i′

|t(i)k − t
(i′)
k |2 and Aslsm(tl, tm) =

sl∏

i=1

sm∏

i′=1

|t(i)l − t(i
′)

m |2. (2.34)

Throughout this paper we use the notation for the measure of integration

dµsk
(tk) =

1

πsksk!

sk∏

i=1

d2t
(i)
k . (2.35)

In the case of algebra sl(2) Coulomb integral (2.33) is known also as two-dimensional

generalization of Selberg integral. It can be calculated explicitly in terms of Γ-

functions [26 – 28] (see also refs. [29, 30]). Unfortunately, it is not clear how to calculate

integral Is1...sn−1(α1, α2, α3) for arbitrary parameters αk in the case of general n > 2, but

if one of the parameters αk satisfy the special condition, for example

α3 = κωn−1, (2.36)

then the integral (2.33) can be carried out explicitly in terms of Γ-functions (see ap-

pendix A). Namely, the integral Is1...sn−1(α1, α2, κωn−1) is non-zero only if s1 ≤ s2 ≤
· · · ≤ sn−1. In order to write down an answer we define an auxiliary function

Rl
k =

l∏

i=1

γ(−ib2)

n∏

j>k

γ(b(Q − α1, hj − hk) − ib2)γ(b(Q − α2, hj − hk) − ib2),

with

γ(x) =
Γ(x)

Γ(1 − x)
. (2.37)

4In the integral (2.21) we can set using the projective invariance z1 = 0, z2 = 1 and z3 = ∞.
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Integral (2.33) equals in this case (one has to remember, that parameters α1, α2 and κ are

subject to the condition α1 + α2 + κωn−1 = 2Q − bs1e1 − · · · − bsn−1en−1)

Is1...sn−1(α1, α2, κωn−1) = (2.38)

=

[ −1

γ(−b2)

]s1+···+sn−1
sn−1∏

j=0

[
1

γ(bκ + jb2)

]
Rs1

1 Rs2−s1
2 . . . R

sn−1−sn−2

n−1 .

It is easy to check, that function

C(α1, α2, κωn−1) =
[
πµγ(b2)b2−2b2

] (2Q−
P

αi,ρ)

b × (2.39)

×
(Υ(b))n−1 Υ(κ)

∏
e>0

Υ
(
(Q − α1, e)

)
Υ

(
(Q − α2, e)

)

∏
ij

Υ
(

κ

n + (α1 − Q,hi) + (α2 − Q,hj)
) ,

which was proposed in [20], satisfies the condition (2.32) at this special case. Here Υ(x) is

the entire selfdual function (with respect to transformation b → 1/b), which was defined

in [17] by the integral representation

log Υ(x) =

∫ ∞

0

dt

t




(
b + b−1

2
− x

)2

e−t −
sinh2

(
b+b−1

2 − x
)

t
2

sinh bt
2 sinh t

2b


 . (2.40)

This function satisfies functional relations

Υ(x + b) = γ(bx)b1−2bxΥ(x),

Υ(x + 1/b) = γ(x/b)b2x/b−1Υ(x).
(2.41)

and in fact is completely determined by them for the general real values of the parameter

b up to a multiplicative constant, which is fixed by the condition

Υ

(
b + b−1

2

)
= 1.

This function was firstly introduced by Barnes [31], as a generalization of ordinary Gamma

function and in the semiclassical limit (b → 0) it has an asymptotic

Υ(by)

Υ(b)
→ b1−y

Γ(y)
as b → 0. (2.42)

One can easily check, that the correlation function (2.39) is consistent with the reflection

identification of the exponential fields (2.16). Due to the symmetry reason, formula similar

to (2.39), but with α3 = κω1 is also valid.5 Note that the condition (2.36) is crucial at

this point and the general formula for the three-point correlation function is much more

complicated.

5One has to change hk → h∗
k = −hn+1−k in (2.39).
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One of the important sets of fields in TFT form so called completely degenerate

fields [23]. Completely degenerate fields Vα in TFT are parameterized by two highest

weights Ω1 and Ω2 of the finite dimensional representations of the Lie algebra sl(n) and

correspond to the value of the parameter α (up to Weyl transformation (2.14))

α = −bΩ1 −
1

b
Ω2. (2.43)

These fields posses an important property that in their operator product expansion with

general primary field Vα appear only a finite number of primary fields Vα′ with their

descendant fields

V−bΩ1−b−1Ω2
Vα =

∑

s,p

C
α′

sp

−bΩ1−b−1Ω2,α

[
Vα′

sp

]
, (2.44)

here by square brackets we denote the contribution of the descendant fields and introduce

the parameter α′
sp as

α′
sp = α − bhΩ1

s − b−1hΩ2
p . (2.45)

In eq. (2.45) hΩ
s are the weights of the representation Ω and C

α′
sp

−bΩ1−b−1Ω2,α
denotes the

structure constant of the operator algebra. During this paper we will consider for simplicity

the case Ω2 = 0.

General structure constant of OPE Cα3
α1,α2

defined as

Cα3
α1,α2

def
= C(α1, α2, 2Q − α3) = R(α3)C(α1, α2, α

∗
3), (2.46)

where R(α3) is the maximal reflection amplitude given by eq. (2.29) and conjugated pa-

rameter α∗
3 is defined by eq. (2.30).6 Strictly speaking, structure constant with completely

degenerate field defined by eq. (2.46) as

Cα−bh
Ω1
s

−bΩ1,α = C(−bΩ1, α, 2Q − α + bhΩ1
s ) (2.47)

will be infinite because general weight hΩ1
s of the representation Ω1 has a form

hΩ1
s = Ω1 −

n−1∑

j=1

sjej (2.48)

with some non-negative integers sj and hence the sum of all parameters in the three-point

correlation function in the r.h.s. of eq. (2.47) satisfies the screening condition (2.19). In this

case one should treat the structure constant Cα−bh
Ω1
s

−bΩ1,α as the main residue of the correspond-

ing three-point correlation function. This residue is given by the Coulomb integral (2.33).

Namely

Cα−bh
Ω1
s

−bΩ1,α = (−πµ)s1+···+sn−1Is1...sn−1(−bΩ1, α, 2Q − α + bhΩ1
s ). (2.49)

The complexity of these structure constants7 depend drastically on the multiplicities of the

corresponding weights hΩ1
s .

6We remind, that parameters α∗ and 2Q − α are connected via Weyl transformation (2.29).
7We study these structure constants in more details in forthcoming paper [22].
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To illustrate this fact we give here some basic structure constants, which can be ex-

pressed in terms of known functions. Let us consider, for example, the case Ω1 = ωk

corresponding to the k-th fundamental representation of the Lie algebra sl(n). We denote

as Hk the set of weights h
(k)
s of the fundamental representation πk with highest weight ωk

(h
(k)
s ∈ Hk). Then the operator product expansion of the field V−bωk

with arbitrary field

Vα due to eq. (2.44) has a form

V−bωk
Vα =

∑

s

Cα−bh
(k)
s

−bωk,α

[
V

α−bh
(k)
s

]
. (2.50)

To describe the structure constants Cα−bh
(k)
s

−bωk,α in this expansion we denote as Rk
s the set of

positive roots e such that e + h
(k)
s ∈ Hk. Then

Cα−bh
(k)
s

−bωk,α =

(
− πµ

γ(−b2)

)(ωk−h
(k)
s ,ρ) ∏

e∈Rk
s

γ
(
b(α − Q, e)

)

γ
(
1 + b2 + b(α − Q, e)

) . (2.51)

This result has been derived from the free field integral (2.49) using the same technique,

which was used in appendix A to derive eq. (2.33).

Another interesting situation, when the integral (2.33) can be calculated exactly is

the structure constants with degenerate field V−be0 (e0 =
∑n−1

k=1 ek is the maximal root

corresponding to highest weight of adjoint representation). This operators plays a role of

integrable perturbation of the theory, which moves conformal TFT to the massive affine

TFT. The operator product expansion of the field V−be0 with general primary field Vα has

a form

V−be0Vα = Cα
−be0,α [Vα] +

∑

e

Cα−be
−be0,α [Vα−be] , (2.52)

where the sum goes over all roots of sl(n). The diagonal structure constant Cα
−be0,α can be

represented as

Cα
−be0,α =

n∑

i=1

n∏

j 6=i

πµγ
(
b(α − Q,hj − hi)

)

γ(−b2)γ
(
1 + b2 + b(α − Q,hj − hi)

)F2
i (α), (2.53)

where functions Fi(α) can be expressed through the higher hypergeometric functions at

unity nFn−1(1) as

Fi(α) = 1 +
∞∑

k=1

n∏

j=1

(b(Q − α, hj − hi) − b2)k
(1 + b(Q − α, hj − hi))k

, (2.54)

where

(x)k = x(x + 1) . . . (x + k − 1). (2.55)

For the positive roots e = hj − hi with i > j the structure constant Cα−be
−be0,α is given by the

product of γ-functions

Cα−be
−be0,α =

( −πµ

γ(−b2)

)(n−i+j−1)

× (2.56)

×
j−1∏

k=1

γ
(
b(Q − α, hk − hj) − b2

)

γ
(
1 + b(Q − α, hk − hj)

)
n−1∏

k=i+1

γ
(
b(Q − α, hi − hk) − b2

)

γ
(
1 + b(Q − α, hi − hk)

) .
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While the structure constants for the negative roots can be expressed through the structure

constants for the positive roots (2.56) as

Cα+be
−be0,α = R−1(α)R(α + be)Cα′−be

−be0,α′ , (2.57)

where R(α) is the maximal reflection amplitude (2.29) and α′ = α + be.

An important point should be emphasized here. It follows from eq. (2.53), that the

structure constant Cα
−be0,α is expressed in terms of higher hypergeometric functions nFn−1

at unity (2.53), while the structure constants Cα−be
−be0,α have more simple form and are

expressed in terms of product of γ-functions (2.56). The difference between these two

cases is related with the fact that field with zero weight in the adjoint representation with

highest weight e0 appears with multiplicity (n − 1), while the weights corresponding to

the roots e appear with multiplicity equal to 1. The same is true for the fundamental

representation with the highest weight ωk, where all weights hk
s of this representation also

appear with multiplicity 1 and as a result the structure constants (2.51) are expressed in

terms of γ-functions. We see, that the fact that some weights have multiplicity more than

one makes the situation more difficult. In the sl(2) case (Liouville field theory) it does not

happen because all weights appear with multiplicity one.

3. Differential equation

Three-point correlation function (2.39), which was derived in section 2 by the calculation of

the Coulomb integrals, can be obtained also from rather different arguments. The idea is to

explore the associativity condition of the operator algebra and to use the special properties

of degenerate fields. This approach was proposed in ref. [21] in order to find the structure

constants in the Liouville field theory (sl(2) TFT). Here we will consider in details the case

of sl(3) TFT, as the next step of complexity.

The chiral part of the algebra of symmetries in this case consists of two currents of the

spin two and three8

W2(z) = T (z) =
∞∑

n=−∞

Ln

zn+2
and W3(z) = W (z) =

∞∑

n=−∞

Wn

zn+3
. (3.1)

The Laurent componets Lk and Wk form closed W3 algebra with the commutation rela-

tions [3, 32]

[Ln, Lm] = (n − m)Ln+m +
c

12
(n3 − n)δn,−m, (3.2a)

[Ln,Wm] = (2n − m)Wn+m, (3.2b)

[Wn,Wm] =
c

3 · 5! (n
2 − 1)(n2 − 4)nδn,−m +

16

22 + 5c
(n − m)Λn+m (3.2c)

+(n − m)

(
1

15
(n + m + 2)(n + m + 3) − 1

6
(n + 2)(m + 2)

)
Ln+m,

8This basis of currents is slightly differs from the basis defined by Miura transformation (2.8). Basis (2.8)

is more convenient, because commutation relations of the W algebra are bilinear. In eq. (3.1) the current

W is primary field with respect to Virasoro algebra and differs from the corresponding current in eq. (2.8)

by adding term proportional to T ′.
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here

Λn =
∞∑

k=−∞
: LkLn−k : +

1

5
xnLn,

x2l = (1 + l)(1 − l) x2l+1 = (2 + l)(1 − l).

This algebra is not Lie algebra due to the quadratic terms in the r.h.s. of eq. (3.2c), however,

as was noticed by A. Zamolodchikov [3], the Jacoby identities are satisfied.

The operator product expansions of the holomorphic currents (3.1) with the primary

fields Vα has the form

T (ξ)Vα(z) =
∆(α)Vα(z)

(ξ − z)2
+

∂Vα(z)

(ξ − z)
+ . . .

W (ξ)Vα(z) =
w(α)Vα(z)

(ξ − z)3
+

W−1Vα(z)

(ξ − z)2
+

W−2Vα(z)

(ξ − z)
+ . . .

(3.3)

here

∆(α) =
(2Q − α,α)

2
(3.3a)

is the conformal dimension and

w(α) = i

√
48

22 + 5c
(α − Q,h1)(α − Q,h2)(α − Q,h3) (3.3b)

is the quantum number associated to the W (z) current. Along this section we omit some-

times (where it is not important) the z̄ dependence of the fields Vα. In eq. (3.3) we introduce

the notations W−1Vα(z) and W−2Vα(z) for the W descendant fields. Using eq. (3.3) one

can obtain Ward identities

〈T (z)V1(z1) . . . VN (zN )〉 =

N∑

k=1

(
∆k

(z − zk)2
+

∂k

(z − zk)

)
〈V1(z1) . . . VN (zN )〉, (3.4a)

〈W (z)V1(z1) . . . VN (zN )〉 =
N∑

k=1

(
wk

(z − zk)3
+

W
(k)
−1

(z − zk)2
+

W
(k)
−2

(z − zk)

)
〈V1(z1) . . . VN (zN )〉.

(3.4b)

Let us explain our notations. For example

W
(k)
−1 〈V1(z1) . . . VN (zN )〉 def

= 〈V1(z1) . . . W−1Vk(zk) . . . VN (zN )〉.

One should emphasize, that contrary to the Virasoro generators operators W−k generally

speaking do not act on correlation functions as some differential operators. This important

difference explains the essential complication, which appear in the analysis of the sl(n)

conformal TFT for n > 2.
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The transformation laws for the currents T (z) and W (z) under the holomorphic sub-

stitution z → f(z) have a form9

T (z) →
(

df

dz

)2

T (f) +
c

12
{f, z}, W (z) →

(
df

dz

)3

W (f). (3.5)

The condition, that infinity is a regular point leads to the following asymptotic condition

for the currents T (z) and W (z)

T (z) ∼ 1

z4
at z → ∞ (3.6a)

and

W (z) ∼ 1

z6
at z → ∞. (3.6b)

It follows from the asymptotic (3.6a) of the current T (z), that correlation functions of

the primary fields satisfy certain set of differential equations, which restrict their possible

coordinate dependence [2]. In the particular cases of two and three points, correlation

functions are completely determined by them up to a numerical factor. For the case of

two-point correlation function these differential equations put the limitation on it. Namely,

two-point correlation function is non-zero only if the dimensions of two fields are equal. One

can consider the asymptotic (3.6b) of the current W (z) in a similar way. Applying (3.6b)

to the Ward identity (3.4b), we obtain five algebraic equations, which also restrict possible

form of the correlation functions. Let us illustrate, how does it work in the case of two-point

correlation function. These five algebraic equations connect different correlation functions,

which enter in Ward identity (3.4b). Namely, we obtain a system of equations




0 0 0 1 1

0 1 1 z1 z2

w1 + w2 2z1 2z2 z2
1 z2

2

3(w1z1 + w2z2) 3z2
1 3z2

2 z3
1 z3

2

6(w1z
2
1 + w2z

2
2) 4z3

1 4z3
2 z4

1 z4
2







〈V1(z1) V2(z2)〉
〈W−1V1(z1) V2(z2)〉
〈V1(z1) W−1V2(z2)〉
〈W−2V1(z1) V2(z2)〉
〈V1(z1) W−2V2(z2)〉




= 0 . (3.7)

This algebraic system has a non-zero solution if the determinant of the matrix above equals

to zero for any points z1 and z2. A simple calculation leads to

det = −(w1 + w2)(z12)
6. (3.8)

It means that the correlation function 〈V1(z1) V2(z2)〉 is zero unless w1 = −w2. As a result,

we obtain the following form of the two-point correlation function

〈V1(z1, z̄1)V2(z2, z̄2)〉 ∼
δ∆1,∆2δw1,−w2

|z12|4∆1
(3.9)

9T (z) does not transform like a tensor, but is shifted by the Schwartz derivative, which is defined as

{f, z} = f ′′′/f ′ − 3/2(f ′′/f ′)2, while W (z) is really a tensor as follows from eq. (3.2b). In the case of sl(n)

algebra for n > 3 it is also possible to choose currents W
k(z) is such a way, that they will be primary with

respect to stress-energy tensor, i. e. will transform like a tensors under the change of variables.
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Omitted multiplicative constant in (3.9) depends only on the particular normalization of

the fields.

To extract the information about the fusion rules it is reasonable to study completely

degenerate representations of the W3 algebra (3.2). Namely, if parameters (∆(α), w(α))

corresponding to the field Vα take one of the four values

∆ = −4b2

3
− 1 w2 = −2∆2

27

5b + 3
b

3b + 5
b

, (3.10a)

∆ = − 4

3b2
− 1 w2 = −2∆2

27

3b + 5
b

5b + 3
b

, (3.10b)

or in terms of parameter α (modulo Weyl transformation (2.14))

α = −bωk or α = −1

b
ωk k = 1, 2. (3.11)

Then this field exhibits three null-vectors [32 – 34]

χ1 =

(
W−1 −

3w

2∆
L−1

)
Vα = 0, (3.12a)

χ2 =

(
W−2 −

12w

∆(5∆ + 1)
L2
−1 +

6w(∆ + 1)

∆(5∆ + 1)
L−2

)
Vα = 0, (3.12b)

χ3 =

(
W−3 −

16w

∆(∆ + 1)(5∆ + 1)
L3
−1 +

12w

∆(5∆ + 1)
L−1L−2 +

3w

2∆

(∆ − 3)

(5∆ + 1)
L−3

)
Vα = 0.

(3.12c)

The next natural step is to investigate, how equations (3.12a), (3.12b) and (3.12c) put

the limitations on the three-point correlation functions, i. e. we want to define the fusion

rules. Let us consider three-point correlation function 〈V (z)V1(z1)V2(z2)〉, where field V (z)

is degenerate field with parameter (3.11) and fields V1(z1) and V2(z2) are some arbitrary

primary fields. In the Ward identity (3.4b) for this case participate seven functions:

〈V (z, z̄)V1(z1, z̄1)V2(z2, z̄2)〉 (3.13)

and also six functions, which can be obtained by the application of the operators W−1 and

W−2 to the fields V , V1 and V2. Due to conformal invariance, the coordinate dependence

of the three-point correlation function is known explicitly

〈V (z)V1(z1)V2(z2)〉 ∼ (z − z1)
(∆2−∆1−∆)(z − z2)

(∆1−∆2−∆)(z1 − z2)
(∆1+∆2−∆). (3.14)

Applying equations (3.12a) and (3.12b) to eq. (3.14) we can express correlation functions

〈W−1V (z)V1(z1)V2(z2)〉 and 〈W−2V (z)V1(z1)V2(z2)〉 as

〈W−1V (z)V1(z1)V2(z2)〉 = − 3w

2∆

(
∆ + ∆1 − ∆2

(z − z1)
+

∆ + ∆2 − ∆1

(z − z2)

)
〈V (z)V1(z1)V2(z2)〉

(3.15a)
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and

〈W−2V (z)V1(z1)V2(z2)〉=
[

12w

∆(5∆ + 1)

(
(∆ + ∆1 − ∆2)(∆ + ∆1 − ∆2 + 1)

(z − z1)2

+
2(∆+∆1−∆2)(∆+∆2−∆1)

(z−z1)(z−z2)
+

(∆+∆2−∆1)(∆+∆2−∆1+1)

(z−z2)2

)

− 6w(∆+1)

∆(5∆+1)

(
(2∆1+∆−∆2)

(z − z1)2
+

(2∆2+∆−∆1)

(z − z2)2

− (∆1+∆2−∆)

(z − z1)(z − z2)

)]
×〈V (z)V1(z1)V2(z2)〉. (3.15b)

Similar to the case of two-point correlation function we obtain five equations, which follow

from the asymptotic condition (3.6b). The determinant of the corresponding matrix should

be zero for any points z, z1 and z2. It gives the equation

12w(∆1 − ∆2)
2 − 3w(∆ + 1)(∆1 + ∆2) + ∆(5∆ + 1)(w1 + w2) − 4w∆(∆ − 1) = 0 (3.16)

We should take also into a account eq. (3.12c) and put 〈χ3(z)V1(z1)V2(z2)〉 = 0. As a

result, we obtain the second algebraic equation

32w(∆1 − ∆2)
3 − 12w(∆ + 1)(∆2

1 − ∆2
2) − w(15∆2 − 18∆ − 1)(∆1 − ∆2)

+∆(∆ + 1)(5∆ + 1)(w1 − w2) = 0 (3.17)

The equations (3.16) and (3.17) define the fusion rules in our model (one should fix pa-

rameters (∆1, w1) and find admissible parameters (∆2, w2)) after that. If we parameterize

(∆1, w1) = (∆(α), w(α)) and (∆, w) = (∆(−bω1), w(−bω1)), then three solutions to the

equations (3.16) and (3.17) are

∆2 = ∆(α1 − bhj) w2 = −w(α1 − bhj) j = 1, 2, 3, (3.18)

where ∆(α) and w(α) are defined by eqs. (3.3a) and (3.3b). There are analogous formulae

for the other completely degenerate fields. We see, that these fusion rules coincide with

those obtained in [23, 32, 34] and coincide with the fusion rules (2.50) for the Lie algebra

sl(3) (see section 2).

Having such rather simple fusion rules (3.18) one can hope that the four-point correla-

tion function, which contains completely degenerate field, will satisfy differential equation

of the third order. Unfortunately, this is not the case. Consider, for example, the correla-

tion function

〈V (z, z̄)Vα1(z1, z̄1)Vα2(z2, z̄2)Vα3(z3, z̄3)〉. (3.19)

Here V (z) is the degenerate field with the parameter α = −bω1. Firstly, one should notice

that the number of equations in this case is not enough to write down the differential equa-

tion. Really: in this case the number of correlation functions in the Ward identity (3.4b)

is nine. These nine correlation functions satisfy five projective Ward equations plus three

equations (3.12a), (3.12b) and (3.12c), which arise in the case, when one of the four fields

is completely degenerate. Total number of equations is eight. Hence, these equations allow
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us only to express all correlation functions in terms of only one correlation function, but

not to write down the differential equation for this function. Therefore we need at least

one more additional condition, which connects different correlation functions in eq. (3.4b)

together.

Let us suppose that one of the fields Vα1 , Vα2 or Vα3 in correlation function (3.19) is

partially degenerate. For example we suppose, that quantum numbers ∆3 and w3 of the

field Vα3 satisfy the relation

9w2
3 = 2∆2

3

(
32

22 + 5c

(
∆3 +

1

5

)
− 1

5

)
, (3.20)

which can be written, as a condition on the vector parameter α3 (modulo Weyl transfor-

mation)

α3 = κω2 (3.21)

with arbitrary coefficient κ. Corresponding field Vκω2 satisfies the null vector condition at

the first level (
W−1 −

3w3

2∆3
L−1

)
Vκω2 = 0. (3.22)

Under this assumption, correlation function (3.19) satisfies differential equation of the third

order. In order to write it explicitly, we define function G(x, x̄) as

〈V (z, z̄)Vα1(z1, z̄1)Vα2(z2, z̄2)Vκω2(z3, z̄3)〉 ∼ |x|2b(α1 ,h1)|1 − x| 2bκ

3
G(x, x̄)

|z − z2|4∆
, (3.23)

with x being the projective invariant of four points x = z23
z13

(z−z1)
(z−z2) and sign ∼ means

that we have omitted factors independent on the coordinate z. We derive from eqs. (3.12)

and (3.22) that function G(x, x̄) satisfies generalized Pochgamer hypergeometric differential

equation of the type (3, 2)10

[
x

(
x

d

dx
+ A1

)(
x

d

dx
+ A2

)(
x

d

dx
+ A3

)
(3.24)

−
(

x
d

dx
+ B1 − 1

)(
x

d

dx
+ B2 − 1

)
x

d

dx

]
G(x, x̄) = 0

with

Ak =
bκ

3
− 2

3
b2 + b(α1 − Q,h1) + b(α2 − Q,hk), (3.25)

and
B1 = 1 + b(α1 − Q, e1),

B2 = 1 + b(α1 − Q, e1 + e2).
(3.26)

Three linearly independent solutions to eq. (3.24) with the diagonal monodromy around

the point x = 0 have a form

G1(x) = F

(
A1 A2 A3

B1 B2

∣∣∣∣x
)

, (3.27a)

G2(x) = x1−B1F

(
1−B1+A1 1−B1+A2 1−B1+A3

2−B1 1−B1+B2

∣∣∣∣x
)

, (3.27b)

10Of course, the same differential equation with x being replaced with x̄ is also valid.
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and

G3(x) = x1−B2F

(
1−B2+A1 1−B2+A2 1−B2+A3

1−B2+B1 2−B2

∣∣∣∣x
)

, (3.27c)

here

F

(
A1 A2 A3

B1 B2

∣∣∣∣x
)

= 1 +
A1A2A3

B1B2
x +

A1(A1 + 1)A2(A2 + 1)A3(A3 + 1)

B1(B1 + 1)B2(B2 + 1)

x2

2!
+ . . . (3.28)

is the hypergeometric function of the type (3, 2).

Let us take now into account the antiholomorphic part of the correlation func-

tion (3.19). We wish our correlation function be invariant with respect to moving point x

around point 0. The invariant combination G(x, x̄), which defines the four-point correlation

function (3.19) has a form

G(x, x̄) =

3∑

j=1

C
α1−bhj

−bω1, α1
C(α1 − bhj , α2, κω2)Gj(x)Gj(x̄) (3.29)

with C
α1−bhj

−bω1, α1
being the structure constants of the operator algebra. Now we should impose

the condition that this correlation function remains invariant, if we move point x around

points ∞ and 1. Evidently, it is sufficient to provide this invariance around point ∞,

because contour surrounding points 1 and ∞ can be transformed to contour surrounding

point 0.

There is another set of solutions to the equation (3.24), which have diagonal mon-

odromy around the point x = ∞.

H1(x) = x−A1F

(
A1 1+A1−B1 1+A1−B2

1+A1−A2 1+A1−A3

∣∣∣∣
1

x

)
, (3.30a)

H2(x) = x−A2F

(
1+A2−B1 A2 1+A2−B2

1+A2−A1 1+A2−A3

∣∣∣∣
1

x

)
, (3.30b)

and

H3(x) = x−A3F

(
1+A3−B1 1+A3−B2 A3

1+A3−A1 1+A3−A2

∣∣∣∣
1

x

)
. (3.30c)

Of course, these two bases (3.27) and (3.30) of the solutions to eq. (3.24) are linearly

connected. Using Mellin-Barnes representation for the generalized hypergeometric function

one can obtain the relation between them. For example

Γ(A1)Γ(A2)Γ(A3)

Γ(B1)Γ(B2)
F

(
A1 A2 A3

B1 B2

∣∣∣∣x
)

=

= (−x)−A1
Γ(A1)Γ(A2 − A1)Γ(A3 − A1)

Γ(B1 − A1)Γ(B2 − A1)
F

(
A1 1+A1−B1 1+A1−B2

1+A1−A2 1+A1−A3

∣∣∣∣
1

x

)

+(−x)−A2
Γ(A2)Γ(A1 − A2)Γ(A3 − A2)

Γ(B1 − A2)Γ(B2 − A2)
F

(
1+A2−B1 A2 1+A2−B2

1+A2−A1 1+A2−A3

∣∣∣∣
1

x

)

+(−x)−A3
Γ(A3)Γ(A1 − A3)Γ(A2 − A3)

Γ(B1 − A3)Γ(B2 − A3)
F

(
1+A3−B1 1+A3−B2 A3

1+A3−A1 1+A3−A2

∣∣∣∣
1

x

)
. (3.31)
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Our correlation function has to be also single valued at the point x = ∞. Hence it must

be represented by the diagonal bilinear form

G(x, x̄) =
3∑

j=1

C
α2−bhj

−bω1, α2
C(α1, α2 − bhj , κω2)Hj(x)Hj(x̄). (3.32)

The necessary conditions of the validity of the both s-channel (3.29) and t-channel (3.32)

decompositions are

Cα1−bh1
−bω1, α1

C(α1 − bh1, α2, κω2)

Cα1−bh2
−bω1, α1

C(α1 − bh2, α2, κω2)
=

∏3
k=1 γ(Ak)γ(B1 − Ak)

γ(B1)γ(B2)

γ(1 − B1 + B2)

γ(B1 − 1)
,

Cα1−bh1
−bω1, α1

C(α1 − bh1, α2, κω2)

Cα1−bh3
−bω1, α1

C(α1 − bh3, α2, κω2)
=

∏3
k=1 γ(Ak)γ(B2 − Ak)

γ(B1)γ(B2)

γ(1 − B2 + B1)

γ(B2 − 1)
.

(3.33)

Of course, functional equations similar to (3.33) with α1 being replaced by α2 are also

valid.

One can expect, that differential equation similar to (3.24) will take place in the sl(n)

case too.11 The condition (3.21) undergoes natural modification

α3 = κωn−1. (3.34)

Let us consider correlation function

〈V−bω1(x, x̄)Vα1(0)Vα2(∞)Vκωn−1(1)〉 = |x|2b(α1,h1)|1 − x| 2bκ

n G(x, x̄). (3.35)

Function G(x, x̄) satisfies generalized Pochgamer hypergeometric differential equation of

the type (n, n − 1) in each of the variables x and x̄
[
x

(
x

d

dx
+ A1

)
. . .

(
x

d

dx
+ An

)
(3.36)

−
(

x
d

dx
+ B1 − 1

)
. . .

(
x

d

dx
+ Bn−1 − 1

)
x

d

dx

]
G(x, x̄) = 0

with

Ak =
bκ

n
− (n − 1)

n
b2 + b(α1 − Q,h1) + b(α2 − Q,hk), (3.37)

and

Bk = 1 + b(α1 − Q, e1 + · · · + ek). (3.38)

The basis of the solutions to differential equation (3.36) with diagonal monodromy around

the point x = 0 has a form

G1(x) = F

(
A1... An

B1...Bn−1

∣∣∣∣x
)

, (3.39a)

. . .

Gk+1(x) = x1−BkF

(
1−Bk+A1...1−Bk+An

1−Bk+B1...2−Bk...1−Bk+Bn−1

∣∣∣∣x
)

for k ≥ 1, (3.39b)

11We do not give here the strict algebraic proof of this fact for sl(n) with n > 3, but the generalization

is very straightforward.
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while the dual basis of the solutions with diagonal monodromy around the point x = ∞
can by represented by the functions

Hk(x) = x−AkF

(
1+Ak−B1...Ak...1+Ak−Bn−1

1+Ak−A1...1+Ak−Ak−1 1+Ak−Ak+1...1+Ak−An

∣∣∣∣
1

x

)
, (3.40)

where F

(
A1... An

B1...Bn−1

∣∣∣∣x
)

is the hypergeometric function of the type (n, n − 1). Four-point

correlation function (3.35) should be single valued function of the variables x and x̄. It

means, that it should be represented simultaneously as

G(x, x̄) =

n∑

j=1

C
α1−bhj

−bω1, α1
C(α1 − bhj, α2, κωn−1)Gj(x)Gj(x̄) (3.41)

and as

G(x, x̄) =

n∑

j=1

C
α2−bhj

−bω1, α2
C(α1, α2 − bhj , κωn−1)Hj(x)Hj(x̄), (3.42)

where functions Gj(x) are given by eqs. (3.39a) and (3.39b) and functions Hj(x) are given

by eqs. (3.40). Using formula naturally generalizing eq. (3.31) for n > 3, we can connect

two bases Gj(x) and Hj(x). As a result, we obtain that the condition of the validity of the

both t− and s− channel decompositions (3.41) and (3.42) for the correlation function (3.35)

has a form

Cα1−bh1
−bω1, α1

C(α1 − bh1, α2, κωn−1)

Cα1−bhk

−bω1, α1
C(α1 − bhk, α2, κωn−1)

=

∏n
j=1 γ(Aj)γ(Bk−1 − Aj)

∏n−1
j=1 γ(Bj)

∏n−1
j 6=k−1 γ(1 + Bj − Bk−1)

γ(Bk−1 − 1)
,

(3.43)

where k = 2, . . . , n.

The structure constants Cα1−bhk

−bω1, α1
admit the free-field representation [35]

Cα1−bhk

−bω1, α1
= (−µ)k−1

∫
〈V−bω1(0)Vα1(1)V2Q−α1+bhk

(∞)

k−1∏

i=1

Vbei
(zi, z̄i) d2zi〉0. (3.44)

The expectation value in eq. (3.44) is taken using the Wick rules in the theory of a free

massless scalar field. This integral, as was pointed out in section 2, can be calculated

explicitly. The answer follows from eq (2.51)

Cα1−bhk

−bω1, α1
=

(
− πµ

γ(−b2)

)k−1 k−1∏

i=1

γ(b(α1 − Q,hi − hk))

γ(1 + b2 + b(α1 − Q,hi − hk))
. (3.45)

Therefore, we obtain from eqs. (3.43) and (3.45) the system of (n− 1) functional relations.

There is another dual set of functional relations with parameter b being replaced with b−1

and cosmological constant µ being replaced with dual cosmological constant µ̃ defined by

eq. (2.26). If parameter b2 real and irrational, then the solution to the both systems of

equations is unique up to a multiplicative constant, which depends only on the parameter

κ. It is easy to check that proposed in section 2 three-point correlation function (2.39)

satisfies both of these systems of equations.
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In conclusion of this section, we present the exact expression for the four-point cor-

relation function (3.35). This correlation function can be expressed in terms of Coulomb

integral

〈V−bω1(x, x̄)Vα1(0)Vα2(∞)Vκωn−1(1)〉 = (3.46)

(
b

π

)n−1 [
πµγ(b2)b2−2b2

] (2Q−α,ρ)
b

(Υ(b))n−1 Υ(κ)
∏
e>0

Υ
(
(Q − α1, e)

)
Υ

(
(Q − α2, e)

)

∏
ij

Υ
(

κ+b
n + (α1 − Q,hi) + (α2 − Q,hj) − bδij

) ×

×|x|2b(α1,h1)|1 − x| 2bκ

n

∫ n−1∏

k=1

d2tk |tk|2(Ak−Bk)|tk − tk+1|2(Bk−Ak+1−1)|t1 − x|−2A1 ,

where tn ≡ 1, α = −bω1 + α1 + α2 + κωn−1 and parameters Ak and Bk are given by

eqs. (3.37)–(3.38). This expression for the correlation function can be derived by the

analytical continuation to the non-integer values of numbers sk in eq. (2.21),12 which

permits also to find expressions for more general correlation functions (see also [29, 30]).

In principle, it is possible to write down explicit expressions for the correlation functions

〈V−mbω1(x, x̄)Vα1(0)Vα2(∞)Vκωn−1(1)〉

in terms of finite dimensional integral for m > 1, but the result will have more tedious

form. We plan to consider these and more general correlation functions in the forthcoming

paper [22].

If we consider the operator product expansion of the field V−bω1 with the field Vκωn−1

in the correlation function (3.46), we find that the coefficient before singularity (1−x)bκ/3

defines the three-point correlation function C(α1, α2, κωn−1 − bω1), which is given by the

expression

C(α1, α2, κωn−1 − bω1) = (3.47)

(
b

π

)n−1 [
πµγ(b2)b2−2b2

] (2Q−α,ρ)
b

(Υ(b))n−1 Υ(κ)
∏
e>0

Υ
(
(Q − α1, e)

)
Υ

(
(Q − α2, e)

)

∏
ij

Υ
(

κ+b
n + (α1 − Q,hi) + (α2 − Q,hj) + bδij

) ×

×
∫ n−1∏

k=1

d2tk |tk|2(Ak−Bk)|tk − tk+1|2(Bk−Ak+1−1)|t1 − 1|−2A1 .

where tn ≡ 1. Integral in eq. (3.47) can be calculated in many different ways. The simplest

one is to combine eqs. (3.35), (3.46) and (3.41) and express it in terms of hypergeometric

functions of the type (n, n − 1). As a result we obtain that

∫ n−1∏

k=1

d2tk |tk|2(Ak−Bk)|tk − tk+1|2(Bk−Ak+1−1)|t1 − 1|−2A1 = πn−1

∏n−1
j=1 γ(Bj − Aj+1)

γ(A1)
×

×
[
G

(
A1 ... An

B1 ... Bn−1

)
+

n−1∑

k=1

G
(

1−Bk+A1 ... 1−Bk+An

1−Bk+B1 ...,2−Bk,... 1−Bk+Bn−1

)]
, (3.48)

12It can be also proved, that integral in eq. (3.46) satisfies holomorphic (and antiholomorphic) differential

equation (3.36).
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where

G
(

A1 ... An

B1 ... Bn−1

)
def
=

γ(A1) . . . γ(An)

γ(B1) . . . γ(Bn−1)
F

(
A1 ... An

B1 ... Bn−1

∣∣1
)2

. (3.49)

As we see from the above, the four-point correlation function in sl(n) TFT, which

contains completely degenerate field, satisfies differential equation, only if at least one of

the other fields is special. Namely, if field Vα3 is degenerate at the first level (parameter

α3 takes the special value α3 = κωn−1), then the four-point correlation function satisfies

Fuchsian differential equation of the order n, which can be reduced to the generalized

Pochgamer differential equation (3.36) and, hence, it can be represented by the Coulomb

integral (3.46). Without such a condition, the four-point correlation function seems to be

more complicated object. One can prove, that for n > 2 it can not be a solution to the

ordinary Fuchsian differential equation of the order n [20]. However, if the field Vα3 is

degenerate (but not completely degenerate) at the higher levels mk + 1, k = 1, . . . , n − 2,

i. e. parameter α3 takes the special values

α3 = κωn−1 −
n−2∑

k=1

mkbωk (3.50)

with non-negative integers mk, then the four-point correlation function can be represented

by the Coulomb integral of the finite order.13

4. Classical limit (heavy exponential fields)

In this section we consider the semi-classical limit b → 0 of the conformal TFT. Let us

define classical field as

φ = bϕ. (4.1)

Its dynamics is described by the classical action

Sclass =
1

8πb2

∫ [
(∂φ)2 + 8πµb2

n−1∑

k=1

e(ek,φ)

]
. (4.2)

In this limit the leading asymptotic of the correlation functions (saddle point asymptotic)

is governed by the classical action calculated on some specific solution to the equations of

motion, which follow from the action (4.2).

We will consider here the case of sl(3) TFT, as an example (sl(2) case corresponding

to Liouville field theory was considered in [17]), which is already non-trivial. The main

asymptotic at b → 0 of the correlation functions 〈Vα1(z1, z̄1) . . . VαN
(zN , z̄N )〉 of heavy

operators with parameters

αk =
ηk

b
(4.3)

is given by the regularized action14

〈Vα1(z1, z̄1) . . . VαN
(zN , z̄N )〉 ∼ exp

(
−Sreg

class [φ(η1 . . . ηN |z1, z̄1 . . . zN , z̄N )]
)
, (4.4)

13We will show it for the case of sl(3) TFT in ref. [22].
14The divergences arise from the vicinity of sources corresponding to the insertion of the operators Vα.

To obtain finite answer one should re-normalize them. See [17, 36] for the regularization prescription.
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here φ(η1 . . . ηN |z1, z̄1 . . . zN , z̄N ) — real single-valued solution to the Toda equation

∂∂̄φ = πµb2
(
e1e

(e1,φ) + e2e
(e2,φ)

)
(4.5a)

with the asymptotic conditions

φ = −4ρ log |z| + . . . at |z| → ∞, (4.5b)

φ = −2ηj log |z − zj | + Xj + . . . at z → zj . (4.5c)

In eq. (4.5c) Xj is a z independent term. The solution to the boundary problem (4.5) with

positive cosmological constant µ exists if

N∑

i=1

(ηi, ωk) − 2 > 0 k = 1, 2. (4.6)

The regularized action Sreg
class on this solution can be calculated as follows [17]. By definition

of the classical regularized action its differential is related with parameters Xj defined by

eq. (4.5c) in a simple way

dSreg
class = −

N∑

j=1

(Xj , dηj) . (4.7)

The constant of integration in eq. (4.7) can be fixed by the condition15

Sreg
class

∣∣∣
P

i(ηi,ωk)=2
=

N∑

i<j

(ηi, ηj) log |zi − zj |2. (4.8)

In the case of sl(3) TFT it is convenient to introduce the projection of the field φ on the

fundamental weights ωk, k = 1, 2:

Φk = (φ, ωk). (4.9)

In terms of fields Φk equation (4.5a) has a form

∂∂̄Φ1 = πµb2e2Φ1−Φ2, (4.10a)

∂∂̄Φ2 = πµb2e2Φ2−Φ1. (4.10b)

General solution to the system of equations (4.10) can be obtained by introducing the

holomorphic currents

T = (∂Φ1)
2 + (∂Φ2)

2 − ∂Φ1∂Φ2 − ∂2Φ1 − ∂2Φ2 (4.11)

and

W =

(
∂Φ1(∂Φ2)

2 + ∂Φ1∂
2Φ1 −

1

2
∂Φ1∂

2Φ2 −
1

2
∂3Φ1

)
(4.12)

−
(

∂Φ2(∂Φ1)
2 + ∂Φ2∂

2Φ2 −
1

2
∂Φ2∂

2Φ1 −
1

2
∂3Φ2

)
.

15In quantum case this condition means, that correlation function 〈Vα1
(z1, z̄1) . . . VαN

(zN , z̄N) is trivial

in the case, then
P

αk = 2Q. Namely, correlation function has a multiple pole under this condition with

residue expressed in terms of free field correlation function without screening fields (see eq. (2.21)).
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Using eq. (4.10), one can easily verify that ∂̄T = ∂̄W = 0. In a similar way, if we change

∂ → ∂̄ in (4.11) and (4.12), we obtain anti-holomorphic currents T̄ and W̄. It follows from

the explicit form of the currents T and W, that field e−Φ1 satisfies both holomorphic and

anti-holomorphic linear differential equations of the third order
(
−∂3 +

1

2
∂T + T∂ + W

)
e−Φ1 = 0, (4.13a)

(
−∂̄3 +

1

2
∂̄T̄ + T̄∂̄ + W̄

)
e−Φ1 = 0 . (4.13b)

Similar equations for e−Φ2 with changed sign before W and W̄ are also valid.16 Differential

equations (4.13) will play an important role in the following.

From the other hand, equations (4.13a) and (4.13b), being viewed as a system of

linear holomorphic and anti-holomorphic differential equations with arbitrary functions

T(z), T̄(z̄), W(z) and W̄(z̄) can be used to solve the system (4.10). Namely, let Ψk = Ψk(z)

are three linearly independent solutions to eq. (4.13a) and Ψ̄k = Ψ̄k(z̄) are three linearly

independent solutions to eq. (4.13b).17 Then we can express the field e−Φ1 , as a bilinear

combination

e−Φ1 =
3∑

k=1

ΨkΨ̄k. (4.14)

After that we find the field e−Φ2 from the equation (4.10a)

e−Φ2 = −(πµb2)−1
3∑

i<j=1

(Ψi∂Ψj − Ψj∂Ψi)(Ψ̄i∂̄Ψ̄j − Ψ̄j ∂̄Ψ̄i). (4.15)

Second equation (4.10b) is satisfied only if

W [Ψ1,Ψ2,Ψ3] W
[
Ψ̄1, Ψ̄2, Ψ̄3

]
= −

(
πµb2

)3
, (4.16)

here W [Ψ1,Ψ2,Ψ3] is Wronskian. Henceworth, the solution to the system (4.10) can be

build up from the solutions of any pair of holomorphic and anti-holomorphic linear differ-

ential equations of the third order with the condition (4.16).

In our case, we should solve eq. (4.5a) with boundary conditions (4.5b) and (4.5c). It

puts the limitations on the possible form of the currents T(z) and W(z). As a consequence

of eq. (4.5b), the currents T(z) and W(z) have asymptotic at infinity

T(z) ∼ 1

z4
W(z) ∼ 1

z6
at z → ∞ (4.17)

and due to (4.5c) are in fact the rational functions

T(z) =

N∑

k=1

(
δk

(z − zk)2
+

Ck

(z − zk)

)
,

W(z) =
N∑

k=1

(
wk

(z − zk)3
+

Dk

(z − zk)2
+

Ek

(z − zk)

)
,

(4.18)

16It is evident because current T(z) is symmetric and current W(z) is antisymmetric under the substitution

1 ↔ 2.
17Generally speaking functions Ψk and Ψ̄k do not complex conjugated to each other.
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here parameters δk and wk are expressed in terms of vector parameters ηk as

δk =
(ηk, ηk)

2
− (ηk, ρ)

wk =
(
(ηk, ω1) − (ηk, ω2)

)(
(ηk, ω1) − 1

)(
(ηk, ω2) − 1

) (4.19)

and coincide up to a sign with semiclassical limit of the quantum numbers (3.3a) and (3.3b).

The parameters Ck, Dk and Ek are not defined from the main asymptotic (4.5c) at z →
zk, but contain information about next subleading terms. In fact, they are not linearly

independent, but satisfy linear algebraic relations, which follow from the asymptotic (4.17)

(analog of Ward identities (3.4a) and (3.4b) in quantum case).

First interesting case is the case of three singular points, which corresponds to the

semiclassical limit of the three-point correlation function. Let us consider it in more details.

In this case the number of equations, which follow from the asymptotic of the current T(z),

is enough to find parameters Ck. Really, we have three parameters C1, C2 and C3 and three

conditions, which follow from the asymptotic of the current T(z) at infinity. Unfortunately,

this is not true for the asymptotic of the current W. In this case, we have six parameters Dk

and Ek and only five equations, which appear from the asymptotic W(z) ∼ 1
z6 . Therefore

one parameter remains free. Evidently, it corresponds to the possibility to add to the

current W(z) the term
1

(z − z1)2(z − z2)2(z − z3)2

with arbitrary coefficient. In order to emphasize this one-parameter freedom, let us fix first

non-vanishing term of the asymptotic of the current W(z) at infinity as

W(z) =
1

2z6

[
w1z12z13(z12 + z13) + w2z21z23(z21 + z23) (4.20)

+w3z31z32(z31 + z32) + 2Λz12z13z23

]
+ O

(
1

z7

)
.

The parameter Λ, which we call accessory parameter, is not known a priori. Here we arrive

at the main difference with sl(2) case, where the accessory parameters do not appear in

the case of three singular points [37]. This difference explains at the classical level why the

three-point correlation function is much more complicated object in higher Toda systems.

As we will show below, the parameter Λ can be found, in principle, from rather different

arguments, which resemble the conformal bootstrap program.

Using projective invariance of eqs. (4.13)18 one can rewrite them through the invariants

of four points

x =
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
and x̄ =

(z̄ − z̄1)(z̄2 − z̄3)

(z̄ − z̄3)(z̄2 − z̄1)
.

18One can show, that differential equation
„

−∂3 +
1

2
∂T + T∂ + W

«

Ψ = 0

is invariant under the substitution z → w(z), Ψ(z) →
`

dw
dz

´−1
Ψ(w), T(z) →

`

dw
dz

´2
T(w) − 2{w, z} and

W(z) →
`

dw
dz

´3
W(w), where {w, z} is Schwartz derivative.
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z1

z2

z3

C1

C2

C3

Figure 1: Basic monodromy contours for the equation (4.13) in the case of three singular points.

For example, eq. (4.13a) will have a form

(
−∂3

x +
1

2
∂xT(x) + T(x)∂x + W(x)

)
Ψ(x) = 0 (4.21)

with

T(x) =
δ1

x2
+

δ2

(x − 1)2
+

δ3 − δ1 − δ2

x(x − 1)
,

W(x) =
w1

x3
+

w2

(x − 1)3
+

1

2
(w1 + w2 + w3)

(
1

x2
− 1

(x − 1)2

)
+

(w1 − w2 + Λ)

x2(x − 1)2
.

(4.22)

Equation (4.21) is the most general Fuchsian differential equation of the third order with

three singular points 0, 1 and ∞ modulo ”gauge” transformation Ψ(x) → xα(x− 1)βΨ(x).

The ”gauge” is fixed by the condition, that term with second derivative ∂2
xΨ(x) is absent

in eq. (4.21).

In order to solve the problem (4.5), one should find real single valued solution to

eqs. (4.13). The last requirement is not trivial, because the general solution to eqs. (4.13)

does not satisfy this property. Let ψk be the basis of the solutions to eq. (4.13a) with

diagonal monodromy around point z = z1

ψk = (z − z1)
1+(η1−ρ,hk) (1 + O(z − z1)) k = 1, 2, 3 (4.23)

If we write a diagonal bilinear combination

e−Φ1 = λ1|ψ1|2 + λ2|ψ2|2 + λ3|ψ3|2, (4.24)

such a solution is evidently invariant if we move point z around point z1 (contour C1 on

figure 1). But we need also such an invariance around points z2 and z3 (contour C2 and C3
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on figure 1 respectively). Let χk be the basis of the solutions to eq. (4.13a) with diagonal

monodromy around point z = z2

χk = (z − z2)
1+(η2−ρ,hk) (1 + O(z − z2)) k = 1, 2, 3. (4.25)

The following formula also should be valid

e−Φ1 = λ̃1|χ1|2 + λ̃2|χ2|2 + λ̃3|χ3|2 (4.26)

with some other constants λ̃k. If the solution e−Φ1 can be represented simultaneously

as (4.24) and as (4.26) it becomes single-valued on a total sphere, because the contour

surrounding point z3 can be transformed to the contour surrounding points z1 and z2, as

guaranteed by the condition (4.17). As functions ψk and χk satisfy the same differential

equation, they are linearly connected

ψi = Mijχj. (4.27)

Entries of the matrix Mij are believed to be meromorphic functions of the parameters δk,

wk and the accessory parameter Λ (for the real values of the parameters δk, wk and Λ

matrix Mij is real). If we substitute relation (4.27) into eq. (4.24), we obtain unwanted

cross terms like χ1χ̄2 destroying the property (4.26), which guarantees that solution is

single-valued. So, one should set all coefficients before such terms equal to zero. As a

result, we arrive to the system of equations




M11M12 M21M22 M31M32

M11M13 M21M23 M31M33

M12M13 M22M23 M32M33







λ1

λ2

λ3


 = 0. (4.28)

The determinant of the corresponding matrix should be zero

det




M11M12 M21M22 M31M32

M11M13 M21M23 M31M33

M12M13 M22M23 M32M33


 = 0. (4.29)

The condition (4.29) can be viewed as an equation on accessory parameter Λ. Each acces-

sory parameter Λ, which solves equation (4.29) gives single-valued solution to the boundary

Toda problem (4.5).

Let us try to find a solution to this equation in a special situation, which corresponds

to the classical limit of three-point correlation function (2.39). Namely, we suppose that

η3 = κω2. (4.30)

In this case one can guess accessory parameter Λ, which solves equation (4.29):

Λ =

(
κ

3
− 1

2

)
(δ1 − δ2) −

1

2
(w1 − w2) (4.31)
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from the rather simple reasoning. The logic is the following: if the condition (4.30) is

satisfied, the equations (4.13) have the same behavior near the singular points as a hyper-

geometric equation of the type (3, 2), but do not coincide with it if parameter Λ is general.

So, we select such special value of the parameter Λ defined by eq. (4.31), that these equa-

tions are identical. One can easily check that the equation (4.29) is satisfied in this case.

The solution to the boundary problem (4.5) can be obtained in this case in a simple way:

expression for the field e−Φ1 can be derived by semiclassical limit of four-point correla-

tion function (3.46) for n = 3, while expression for the field e−Φ2 can be obtained from

eq (4.10a). Both of them can be expressed in terms of Coulomb integrals (for simplicity

we set z1 = 0, z2 = ∞, z3 = 1 and z = x)

e−Φ1 = C |x|2(η1 ,ω1)|x − 1| 2κ
3

∫
d2t d2y |t − x|2b1 |t − y|2b2 |y − 1|2b3 |t|2a1 |y|2a2 ,

e−Φ2 = C̃ |x|2(η1 ,ω2)|x − 1|2− 2κ
3

∫
d2t d2y |t − x|2b̃1 |t − y|2b̃2 |y − 1|2b̃3 |t|2ã1 |y|2ã2 ,

(4.32)

with

ak = −1 +
κ

3
+ (η1 − ρ, hk+1) + (η2 − ρ, hk), bk = −κ

3
− (η1 − ρ, hk) − (η2 − ρ, hk),

(4.33)

ãk = −κ

3
+ (η1 − ρ, h∗

k+1) + (η2 − ρ, h∗
k), b̃k = −1 +

κ

3
− (η1 − ρ, h∗

k) − (η2 − ρ, h∗
k),

where h∗
k = −h4−k and

C =
µb2

π

∏3
k=1 γ(κ

3 + (η1 − ρ, hk) + (η2 − ρ, hk))
∏3

i=1

∏3
j=1

[
γ(κ

3 + (η1 − ρ, hi) + (η2 − ρ, hj))
] 1

3

,

C̃ =
µb2

π

∏3
i=1

∏3
j=1

[
γ(κ

3 + (η1 − ρ, hi) + (η2 − ρ, hj))
] 1

3

∏3
k=1 γ(κ

3 + (η1 − ρ, hk) + (η2 − ρ, hk))
.

(4.34)

This solution can be also written through the hypergeometric function of the type (3, 2).

The regularized classical action on this solution Sreg
class can be easily found using eqs. (4.7)

and (4.8) and has a form

Sreg
class = ((η1 + η2, ρ) + κ − 4) log(πµb2) + F (κ) +

∑

e>0

F ((ρ − η1, e)) +
∑

e>0

F ((ρ − η2, e))

−
∑

ij

F
(κ

3
+ (η1 − ρ, hi) + (η2 − ρ, hi)

)
− F 2(0) (4.35)

with

F (x) =

∫ x

1
2

log γ(t)dt. (4.36)

We see that the classical limit of the proposed three-point correlation function (2.39) is in

complete agreement with expression (4.35).

We have found a solution to the boundary Toda problem (4.5) and an explicit expres-

sion for the accessory parameter Λ in the case of five-parametric family (vector param-

eter η3 restricted by the condition η3 = κω2). In general case boundary problem (4.5)
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is rather complicated, because it corresponds to the most general differential equation

of the third order with three singular points of the Fuchsian type (by projective invari-

ance this equation can be transformed to equation (4.21)). It is interesting to notice,

that to the same type belongs differential equation for the four-point correlation func-

tion 〈V−b(z)Vα1(z1)Vα2(z2)Vα3(z3)〉 in the Liouville field theory [2] (sl(2) TFT).19 It can

be transformed to the differential equation (4.21) with parameters (one should take into

account projective invariance)

δk = −2

3
b2(6∆L(αk)−3−2b2), wk = − 2

27
b2(36b2∆L(αk)−8b4−18b2−9), Λ = 0. (4.37)

If we introduce auxiliary parameter g = −b2, then the numbers δk and wk are subject the

condition

δk − 3wk

2g
=

4g2

9
− 1, (4.38)

which can be parameterized in terms of vector parameter ηk, which enter in eq. (4.19), as

ηk = λkω1 + (λk − 2g)ω2 k = 1, 2, 3, (4.39)

where ω1 and ω2 are the fundamental weights of the Lie algebra sl(3) and λk are auxiliary

scalar parameters. Simultaneous single valued solution to equation (4.21) and to corre-

sponding antiholomorphic equation can be written in terms of Coulomb integral [29, 30]

(this solution coinsides up to multiplicative constant with the field e−Φ1)

e−Φ1 = D|x|2λ1−4g/3|x − 1|2λ2−4g/3

∫ 2∏

k=1

|tk|2A|tk − 1|2B |tk − x|2CD2g
2 (t) d2t1 d2t2, (4.40)

where D2(t) = |t1 − t2|2 and

A = −λ1 − C, B = −λ2 − C, C = 1 + g − 1

2
(λ1 + λ2 + λ3). (4.41)

The dual solution to the differential equation (4.21) with changed sign before current W (x)

(this solution corresponds to the field e−Φ2) has a form

e−Φ2 = D′|x|2λ1−8g/3|x−1|2λ2−8g/3

∫ 2∏

k=1

|tk|2A′ |tk−1|2B′ |tk−x|2C′D2g′

2 (t) d2t1 d2t2 (4.42)

with

A′ = A + g, B′ = B + g, C ′ = C + g, g′ = −g.

Functions e−Φ1 and e−Φ2 given by eqs. (4.40) and (4.42) define modulo numerical factors

the solution to the Toda boundary problem (4.5) with three singular points 0, 1 and ∞ and

parameters ηk given by eq. (4.39). We do not give here explicit expressions for the numerical

19Here we use standart for the Liouville field theory (LFT) notations, which differ from those used in this

paper. Namely central charge in LFT equals cL = 1+6(b+ b−1)2 and exponential fields Vα have conformal

dimensions ∆L(α) = α(b + b−1 − α). One should emphasize, that parameter b here is formal parameter,

which does not goes to zero.
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constants D and D′ before integrals (4.40) and (4.42) and for the action calculated on this

solution, because in this paper we do not suppose to quantize it.

The results of this section show, that the boundary problem (4.5) for the sl(3) Toda

equation is much more complicated than the corresponding boundary problem for Liou-

ville equation. Even in the case of three singular points one should deal with accessory

parameters. Boundary problem (4.5) can be reduced to the problem to finding single val-

ued solution to the holomorphic and antiholomorphic Fuchsian differential equations of

the third order with given behavior near the singular points.20 We have shown that it

can be reduced to the problem of finding values of accessory parameter Λ which solves

equation (4.29). We suppose, that in the domain (4.6) the solution to this equation is

unique.

An interesting question how to find parameter Λ. We have found it in two different

cases. First case is when one of the parameters ηk is proportional to the fundamental

weight (for example η3 = κω2). In this case accessory parameter Λ is given by eq. (4.31).

Another interesting case, which corresponds to the differential equation for the quantum

field V−b in Liouville field theory gives the value of the parameter Λ = 0. One has to notice,

that in both cases the solution to eq. (4.21) is given in terms of Coulomb integrals over a

plane (eqs. (4.32) and (4.40) respectively), so these solutions are evidently single valued.

An important problem remains unsolved: how to find parameter Λ in general case? It is

difficult to expect, that solution to eq. (4.21) in general case can be expressed in terms of

finite dimensional integral. Because of that we do not have a efficient procedure to find

matrix Mij defined by eq. (4.27). We suppose to develop the effective numerical method

to solve this problem in a future publication.

5. Classical limit (light exponential fields)

In this section we consider the semiclassical limit of sl(3) TFT in the opposite case of light

exponential fields Vαk
with parameters

αk = bηk. (5.1)

The solution to the Toda equation (4.5a) with positive cosmological constant µ in this case

does not exist, because the condition (4.6) does not satisfied. In order to have a solution,

it is useful to perform analytical continuation µ → −µ.21 The leading asymptotic behavior

of correlation functions at b → 0 is now governed by the solution to the Toda equation

with the opposite sign in the r.h.s.

∂∂̄φ = −πµb2
(
e1e

(e1,φ) + e2e
(e2,φ)

)
. (5.2)

It is evident, that light exponential fields Vbηk
do not affect on dynamics, it means, that in

this case one has to set

T = W = T̄ = W̄ = 0 (5.3)

20The most general such equation with three singular points 0, 1 and ∞ is given by eq. (4.21).
21Alternatively, one can consider the correlation functions with the fixed ”area”. See ref. [17] for details.
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in eqs. (4.13). General solution to eq. (5.2) expressed in terms of solutions to eqs. (4.13),

which in this case are the polynomials of degree 2. It is convenient to parameterize these

polynomials by nine complex parameters ak, bk and ck (k = 1, 2, 3) as follows

pk = ak + bkz +
ck

2
z2. (5.4)

The solution to the Toda equation (5.2) is given by

φ0(z, z̄) = −ρ log(πµb2) + e1Φ
0
1(z, z̄) + e2Φ

0
2(z, z̄) (5.5)

with ρ being the Weyl vector and

Φ0
1(z, z̄) = − log

(
|p1|2 + |p2|2 + |p3|2

)
, Φ0

2(z, z̄) = − log
(
|p̃1|2 + |p̃2|2 + |p̃3|2

)
, (5.6)

where the dual polynomials p̃i are defined as

p̃1 = p2p
′
3 − p3p

′
2, p̃2 = p1p

′
3 − p3p

′
1, p̃3 = p1p

′
2 − p2p

′
1. (5.7)

Due to eq. (4.16) nine complex parameters ak, bk and ck are subject to the SL(3, C)

constraint

det




a1 b1 c1

a2 b2 c2

a3 b3 c3


 = 1. (5.8)

The difference with the semiclassical limit of the correlation function of ”heavy” exponen-

tial fields considered in section 4 is that the saddle point now is not unique. The action

is minimazed on any function φ0(z, z̄) defined by eq. (5.5). So, in order to obtain the

semiclassical expression for the correlation function of the light operators Vbηk
one should

integrate over the space of all polynomials (5.4) restricted by the condition (5.8). Namely,

the semiclassical limit of the N -point correlation function is given by the integral

1

Z0
〈Vbη1(z1, z̄1) . . . VbηN

(zN , z̄N )〉 −→
b→0

∫ N∏

k=1

e(ηk ,φ0(zk,z̄k))dΩ(ak, bk, ck), (5.9)

where Z0 is TFT partition function and dΩ(ak, bk, ck) is the SL(3, C) invariant measure.

It is evident from eq. (5.6), that fields Φ0
1(z, z̄), Φ0

2(z, z̄) and the integral (5.9) have

SU(3) invariance. Hence, the integral (5.9) is just proportional to the volume of SU(3).

We use Iwasawa decomposition for the SL(3, C) to fix the gauge. Namely, each SL(3, C)

matrix can be represented, as a product of SU(3) matrix and uppertriangle matrix with

unit determinant:

SL(3, C) = SU(3) ×




̺ a b

0 ν c

0 0 τ


 (5.10)

here a, b and c are the complex numbers and ̺, ν and τ are the real numbers with the

condition ̺ντ = 1. In this gauge polynomials pk and p̃k defined by eqs. (5.4) and (5.7) will
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have the following form

p1 =
̺z2

2
+ az + b, p2 = νz + c, p3 = τ,

p̃1 = ντ, p̃2 = τ(̺z + a), p̃3 =
̺νz2

2
+ c̺z + ac − bν.

(5.11)

The measure will transform to

dΩ(ak, bk, ck) = dΘ d2a d2b d2c ̺3d̺ νdν, (5.12)

where dΘ is SU(3) invariant measure.

In the case of three-point correlation function it is convenient to introduce the notations

(η1, ej) = λj ; (η2, ej) = κj ; (η3, ej) = σj ; j = 1, 2. (5.13)

The semiclassical limit of three-point correlation function has a form

1

Z0
〈Vbη1(z1, z̄1)Vbη2(z2, z̄2)Vbη3(z3, z̄3)〉 −→

b→0

(
πµb2

)−λ1−λ2−κ1−κ2−σ1−σ2 ×

×J(λ1, λ2;κ1, κ2;σ1, σ2|z1, z̄1, z2, z̄2, z3, z̄3), (5.14)

with

J(λ1, λ2;κ1, κ2;σ1, σ2|z1, z̄1, z2, z̄2, z3, z̄3) = (5.15)

=

∫
exp

(
2∑

k=1

(
λkΦ

0
k(z1, z̄1) + κkΦ

0
k(z2, z̄2) + σkΦ

0
k(z3, z̄3)

)
)

d2a d2b d2c ̺3d̺ νdν,

where functions Φ0
k(z) are given by eq. (5.6) with polynomials pk and p̃k defined by

eqs. (5.11). The coordinate dependence of the integral (5.15) is fixed by the projective

invariance and we can set z1 = 0, z2 = 1 and z3 = ∞. More exactly we consider the limit

of the integral (5.15)

J(λ1, λ2;κ1, κ2;σ1, σ2) = lim
z3→∞

|z3|4(σ1+σ2)J(λ1, λ2;κ1, κ2;σ1, σ2|0, 1, z3). (5.16)

Function J(λ1, λ2;κ1, κ2;σ1, σ2), which defines the semiclassical limit of three-point corre-

lation function, will be the main object of this section. For convenience, it is better to

renormalize parameters a, b, c, ̺ and ν

a → νa; b → τb; c → τc,

̺ → τ̺; ν → τν (5.17)

and take into account the condition τν̺ = 1. Then function J(λ1, λ2;κ1, κ2;σ1, σ2) can be

represented by the eight-dimensional integral

J(λ1, λ2;κ1, κ2;σ1, σ2) = 4σ1+σ2

∫
̺2δν2∆

Zλ1
1 Zλ2

2 Zκ1
3 Zκ2

4

d̺

̺

dν

ν
d2a d2b d2c (5.18)
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with

Z1 = 1 + |b|2 + |c|2, Z3 = 1 + |c + ν|2 +
∣∣∣b + νa +

̺

2

∣∣∣
2
,

Z2 = 1 + |a|2 + |ac − b|2, Z4 = 1 +
∣∣∣a +

̺

ν

∣∣∣
2
+

∣∣∣
̺

2
+

c̺

ν
+ ac − b

∣∣∣
2

(5.18a)

and

δ =
1

3
(λ1 + 2λ2 + κ1 + 2κ2 − 2σ1 − σ2) ,

∆ =
1

3
(λ1 − λ2 + κ1 − κ2 + σ1 − σ2) .

(5.18b)

After non-trivial transformations (see appendix B for details), integral (5.18) can be re-

duced to the three dimensional Barnes like integral

J(λ1, λ2;κ1, κ2;σ1, σ2) = 4λ1+κ1+σ1−∆ × (5.19)

× Γ
(
λ1 + κ1 + σ1 − ∆ − 2

)
Γ
(
λ2 + κ2 + σ2 + ∆ − 2

)

Γ(λ1)Γ(λ2)Γ(λ1 + λ2 − 1)Γ(κ1)Γ(κ2)Γ(κ1 + κ2 − 1)Γ(σ1)Γ(σ2)Γ(σ1 + σ2 − 1)
×

× 1

(2πi)3

∫
du ds dy 4−u Γ(y)Γ(s)Γ(u)Γ(σ1−u−s)Γ(λ2+∆−u−s)Γ(σ1−κ2−∆+y) ·

Γ(σ1−κ2+λ1−∆ − u − s)Γ(κ1+κ2−1−y)Γ(κ1+λ1−∆−1−y)Γ(κ2+σ2+∆−1−y) ·

Γ(λ2 − κ1 + ∆ + y)
Γ(κ1 − λ2 − ∆ + s)Γ(κ2 + ∆ − σ1 + s)Γ(u − ∆)

Γ(s + y)Γ(λ1 + κ1 + σ1 − ∆ − 1 − u − s − y)
,

where the integral over variables u, s and y goes along imaginary axis. Integral (5.19) is

convergent in the domain

1 + (η1 − ρ, hi) + (η2 − ρ, hj) + (η3 − ρ, hk) > 0 if (hi + hj + hk, ρ) > −1,

1 + (η1 − ρ, hi) + (η2 − ρ, hj) + (η3 − ρ, hk) < 0 if (hi + hj + hk, ρ) ≤ −1,
(5.20)

where vector parameters η1, η2 and η3 are related with parameters λk, κk and σk by

eq. (5.13). By definition, the integral (5.9) and hence the integral (5.19) should be sym-

metric with respect to substitution λ → κ → σ and also with respect to substitution 1 → 2,

but these symmetries are not evident from it explicit form. We were not able to repre-

sent this integral in terms of the finite sum of the known functions. Another alternative

expression for the function J(λ1, λ2;κ1, κ2;σ1, σ2) in terms of three-dimensional integral

of Tricomi functions is given in the appendix B. We see, that the integral (5.19), which

is semiclassical limit of the three-point correlation function, is already rather nontrivial

object. Henceworth, it is difficult to expect that quantum expression will have a simple

form.

Integral in eq. (5.19) simplifies drastically if one of the parameters λk, κk or σk equals

to zero. For example, let us consider the limit σ1 → 0. We see, that due to the factor

Γ(s)Γ(u)Γ(σ1 −u−s) in the integrand in (5.19) in this case integral (5.19) develops a pole,

when we pinch points u and s near the point u = s = 0. This pole cancelles with a zero

coming from function Γ(σ1)
−1 in the prefactor of (5.19) and remaining integral over the

variable y can be performed using the first Barnes lemma (D.6). As a result we obtain a
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simple expression for the function (5.19)

J(λ1, λ2;κ1, κ2; 0, σ2) = 4
σ2
3

+(η1+η2,ρ) × (5.21)

×
∏

ij Θij

Γ(σ2)
∏

e>0 Γ(1 + (η1 − ρ, e))Γ(1 + (η2 − ρ, e))
,

where vectors ηk are given by eq. (5.13) and

Θij =

{
Γ(σ2

3 + (η1 − ρ, hi) + (η2 − ρ, hj)) if (hi + hj , ρ) > −1

Γ(1 − σ2
3 − (η1 − ρ, hi) − (η2 − ρ, hj)) if (hi + hj , ρ) 6 −1

The result (5.21) agrees with the corresponding limit of the three-point correlation func-

tion (2.39), where α1 = bη1, α2 = bη2 and κ = bσ2. If all vectors ηk are general, the

integral (5.19) is much more involved object and we plan to study its analytical properties

in a future publication.

Another interesting point, where the integral (5.19) can be calculated exactly, is de-

fined by the condition σ1 = −m with integer m, i. e. η3 = σ2ω2 − mω1.
22 In this case

function (5.19) can be given by triple finite sum, which in general contains

N(m) =
(m + 1)(m + 2)(m + 3)

6
(5.22)

terms and has a form

J(λ1, λ2;κ1, κ2;−m,σ2) = 4λ1+κ1−∆Γ(λ1+κ1 − 2−m−∆)Γ(−m−∆)Γ(λ1−κ2−m−∆)

Γ(κ1 − λ2 − m − ∆)Γ(λ2 + κ2 + ∆ − 1) ×

×Γ(λ1 − (m + 1) − ∆)Γ(κ1 − (m + 1) − ∆)Γ(λ2 + ∆)Γ(κ2 + ∆)

Γ(λ1)Γ(λ2)Γ(κ1)Γ(κ2)Γ(σ2)Γ(λ1 + λ2 − 1)Γ(κ1 + κ2 − 1)
m∑

s1,s2,s3=0

(−4)−s1−s2−s3(−m)s1+s2+s3(−∆ − m)s1+s2+s3(1−∆−m−σ2+s1+s2+s3)s1

s1!s2!s3!

×(λ1−κ2−m−∆)m−s1−s3(κ1−λ2−m−∆)m−s1−s2(λ1−(m+1)−∆)s3(κ1−(m+1)−∆)s2

(λ2 + ∆)m−s3(κ2 + ∆)m−s2(σ2 − (m + 1))s2+s3(3 − ∆ − σ2 − λ2 − κ2)m−s2−s3 (5.23)

where

(x)k = x(x + 1) . . . (x + k − 1)

and ∆ is defined by eq. (5.18b) with σ1 = −m.

It is interesting to consider eq. (5.23) in the limit σ2 → −n (corresponding quantum

field will have parameter α = −mbω1 − nbω2 and will be completely degenerate). If

we substitute σ2 = −n in eq. (5.23), then for general parameters λk and κk function

J(λ1, λ2;κ1, κ2;−m,−n) will be zero due to the factor 1/Γ(σ2). This represents the fact,

22In quantum case field Vα with parameter α = σ2ω2 −mbω1 is partially degenerate (it has a null-vector

at the level m + 1). The three-point correlation function with such a field can be expressed in terms of

finite dimensional Coulomb integral, as it will be shown in ref. [22], and generalizes the answer (3.47) for

the case of Lie algebra sl(3).
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that the quantum three-point correlation function C(−mbω1 − nbω2, α1, α2) (where αk =

bηk) with completely degenerate field and two arbitrary fields equals to zero. However, if

one tunes the parameter α2 for the fixed value of the parameter α1 in a special way (there

are only finite number of such possibilities), then this correlation function will be infinite,

namely, it will have a double pole in this limit. In this case, as was explained in section 2,

it is reasonable to study the structure constants of OPE, which are defined as the main

residues of three-point correlation function. At semiclassical level it means, that one should

fix parameters λ1 and λ2 and for given value of the parameter σ1 = −m find such values

of the parameters κ1 and κ2, that function (5.23) has a double pole in the limit σ2 → −n.

Namely, if parameters κ1 and κ2 approach to the values

κ1 = λ2 − n + 2l − k; κ2 = λ1 − m + 2k − l, (5.24)

i. e. η2 → η∗1 − nω1 − mω2 + le1 + ke2, then the double pole appears for integer k and l

restricted by the conditions

k ≥ 0; l ≤ m + n; l ≥ k − m. (5.25)

From the quantum point of view, it means, that correlation function

C(−mbω1 − (nb + ǫ)ω2, α1, α
∗
1 − nbω1 − mbω2 + lbe1 + kbe2) ∼

1

ǫ2
(5.26)

becomes infinite in the limit ǫ → 0. It follows from the fact, that this correlation function

coinsides up to Weyl transformation with correlation function

C(−mbω1 − (nb + ǫ)ω2, α1, α
∗
1 − bh̃kl

mn) = (5.27)

R−1(α1 − bhkl
mn)C(−mbω1 − (nb + ǫ)ω2, α1, 2Q − α1 + bhkl

mn),

where

hkl
mn = mω1 + nω2 − ke1 − le2, h̃kl

mn = mω2 + nω1 − ke2 − le1 (5.28)

and R(α) is the maximal reflection amplitude defined by eq. (2.29). Correlation function

in the r.h.s. of eq. (5.27) has a double pole, because the sum of all parameters satisfies the

screening condition in the limit ǫ → 0

−mbω1 − nbω2 + α1 + 2Q − α1 + bhkl
mn = 2Q − kbe1 − lbe2. (5.29)

The main residue in this pole should be associated with structure constant

C(−mbω1 − (nb + ǫ)ω2, α1, 2Q − α1 + bhkl
mn) =

1

ǫ2
C

α1−bhkl
mn

−mbω1−nbω2,α1
. (5.30)

So, in this case it is reasonable to consider the semiclassical limit of this structure constant.

Maximal reflection amplitude R(bη), which due to eq. (2.28) coinsides with inverse two-

point correlation function, has the following semiclassical limit (here η = κ1ω1 + κ2ω2)

Z0R(bη) −→
b→0

(
πµb2

2

)2κ1+2κ2

(κ1 − 1)(κ2 − 1)(κ1 + κ2 − 2). (5.31)
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Semiclassical limit of the structure constant (5.30) can be obtained by multiplying

eqs. (5.23) and (5.31), substituting (5.24), taking the limit σ2 → −n and finding the main

residue in this limit (one should take also into account the factor (πµb2)−λ1−λ2−κ1−κ2−σ1−σ2

in eq. (5.14), which relates function (5.21) with the semiclassical limit of the three-point

correlation function). We see from eqs. (5.14), (5.27) and (5.31), that the structure constant

defined by eq. (5.30) has a smooth semiclassical limit independent on partition function

Z0. If we parameterize α = bλ1ω1 + bλ2ω2, then the semiclassical limit of the structure

constant C
α−bhkl

mn

−mbω1−nbω2,α defined by the relation

C
α−bhkl

mn

−mbω1−nbω2,α −→
b→0

C
kl
mn(λ1, λ2) (5.32)

can be written in a form

C
kl
mn(λ1, λ2) =

(
πµb2

2

)k+l
m!n!

Γ(λ1)Γ(λ2)Γ(λ1 + λ2 − 1)
× (5.33)

× Σk,l
m,n(λ1, λ2)

Γ(λ1 − m + 2k − l − 1)Γ(λ2 − n + 2l − k − 1)Γ(λ1 + λ2 − m − n + k + l − 2)

with function Σk,l
m,n(λ1, λ2) defined as

Σk,l
m,n(λ1, λ2) =

(−1)k2l−k4m

m! k! (m + l − k)! (m + n − l)!
Γ(λ1 − m + k)Γ(λ2 + l − k) × (5.34)

×Γ(λ1+λ2−m+k−1)Γ(λ1−m+k−l−1)Γ(λ2−m−n+l−1)Γ(λ1+λ2−m−n+l−2) ×

×
m∑

s1,s2,s3=0

[
(−4)−s1−s2−s3

s1!s2!s3!
(1−l+k−m+n+s1+s2+s3)s1(k − l − m)s1+s2+s3

(−k)m−s1−s3 × (−m)s1+s2+s3(l−m−n)m−s1−s2 (−1−m−n)s2+s3

(λ1+k−m−l−1)s3 (λ2+l−m−n−1)s2 ×

×(λ1−m+k)m−s2 (λ2+l−k)m−s3 (3−k+m+n−λ1−λ2)m−s2−s3

]
.

From the explicit form of the function Σk,l
m,n(λ1, λ2) it can be shown, that it is non-zero

only if numbers k and l, besides inequalities (5.25), are restricted by the conditions23

l ≥ 0, k ≤ m + n, k ≥ l − n. (5.35)

It is convenient to picture admissible pairs (k, l) (they are defined by the conditions (5.25)

and (5.35)), as a set of points on a plane. Namely, function (5.33) is non-zero only if points

(k, l) lay inside of a hexagon

k ≥ 0; l ≥ 0; m + n ≥ k; m + n ≥ l; n + k ≥ l; m + l ≥ k. (5.36)

An example of fusion rules for the completely degenerate field specified by the highest

weight Ω = mω1 +nω2 with (m,n) = (7, 3) is shown on a figure 2. We note also, that these

23These conditions follow also evidently from the functional relations (5.37) (see below).
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l

k

Figure 2: Fusion rules for the completely degenerate field specified by the highest weight Ω =

mω1 + nω2 with (m, n) = (7, 3). Each point corresponds to admissible pair (k, l) in eq. (5.33).

Points on the boundary correspond to the weights hkl
mn with multiplicity one, points on the next layer

boundary (which are shown by circles) correspond to the weights hkl
mn

with multiplicity two, points,

shown by crosses, correspond to multiplicity three and points, shown by stars (hexagon is degenerate

into triangle), correspond to multiplicity four. Total number of points (including multiplicities)

coincides with dimension of the representation (7, 3): (m + 1)(n + 1)(m + n + 2)/2 = 192.

fusion rules coinside exactly with quantum fusion rules, which were defined in section 2.

The sum in (5.34) can be reduced to a simple product for all points (k, l), which have

multiplicity one (i. e. for points on the boundary of the hexagon). It follows from the fact,

that function Σkl
mn(λ1, λ2) satisfies remarkable functional relations.24 Namely,

Σk,l
m,n(λ1, λ2) = Σl,k

n,m(λ2, λ1) = (5.37)

(−1)m−kΣm,m+l−k
k,m+n−k(λ1 + k − m,λ2) = Σl,k

m+l−k,n+k−l(λ1 − l + k, λ2 − k + l).

In quantum case the structure constant, which corresponds to the weight hkl
mn with multi-

plicity 1, as was noticed in section 2, can be represented as a product of γ−functions.

Using functional relations (5.37) it can be shown, that the number of terms in the

sum (5.34) can be reduced to the minimum of numbers

N(m), N(n), N(k), N(l), N(m+n−k), N(m+n−l), N(m+l−k), N(n+k−l), (5.38)

where N(m) is given by eq. (5.22). It is evident from the figure 2 that this number de-

pends only on the multiplicity h of the corresponding weight hkl
mn of the representation with

24We suppose to give a proof of quantum version of relations (5.37) in ref. [22].
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highest weight mω1 + nω2. In quantum case expression for the structure constant (5.27)

for completely degenerate field can be reduced to the 4(h − 1)-dimensional Coulomb inte-

gral [22]. For h = 1 this correlation function can be given, as a product of γ-functions. For

h = 2 it can be expressed in terms of hypergeometric function of the type (3, 2) at unity,

while for h > 2 it has more complicated structure. This fact clarifies the statement, which

was done in section 2, that the complexity of the structure constant depends drastically

on the multiplicity of the corresponding weight.

We note also, that due to eq. (2.49) structure constant (5.30) coinsides up to multi-

plicative factor with Coulomb integral

C
α−bhkl

mn

−mbω1−nbω2,α = (−πµ)k+lIk,l(−mbω1−nbω2, α, 2Q−α+mbω1+nbω2−kbe1−lbe2), (5.39)

where integral Ik,l(−mbω1 − nbω2, α, 2Q − α + mbω1 + nbω2 − kbe1 − lbe2) is defined by

eq. (2.33) for the case n = 3, which is studied in details in appendix C. Using the notations

of the appendix C this integral equals

Ik,l(−mbω1 − nbω2, α, 2Q − α + mbω1 + nbω2 − kbe1 − lbe2) = (5.40)

k!l!

πk+l
Ikl(−b2λ1,−b2λ2,−mb2,−nb2),

where the integral Ikl(−b2λ1,−b2λ2,−mb2,−nb2) is given by eq. (C.1). Using asymp-

totic (C.5) for this integral, we can obtain additional representation for the semiclassical

limit of the structure constant (5.30).

Let us say few words about the semiclassical limit of general sl(n) TFT. This limit is

governed by the classical equation25

∂∂̄φ +

n−1∑

k=1

eke
(ek ,φ) = 0. (5.41)

One can show, that as consequence of eq. (5.41), field e−(ω1,φ) satisfies holomorphic and

antiholomorphic differential equations of the order n

(−∂n + T∂n−2 + . . . )e−(ω1,φ) = 0

(−∂̄n + T̄∂̄n−2 + . . . )e−(ω1,φ) = 0
(5.42)

where by . . . denoted terms with derivatives of the smaller order. As a consequence of

eq. (5.42) field e−Φ1 can be presented as a bilinear combination of the holomorphic and

antiholomorphic solutions to (5.42)

e−(ω1,φ) =
n∑

k=1

ΨkΨ̄k. (5.43)

25In eq. (5.41) we have set for shortness πµb2 = 1.
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It follows from eq. (5.41) that fields e−(ωk,φ) with k 6= 1 have a form

e−(ωk ,φ) =

n∑

j1<j2<···<jk

∣∣∣∣∣∣∣∣∣∣∣

Ψj1 Ψj2 . . . Ψjk

∂Ψj1 ∂Ψj2 . . . ∂Ψjk

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

∂k−1Ψj1 ∂k−1Ψj2 . . . ∂k−1Ψjk

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

Ψ̄j1 Ψ̄j2 . . . Ψ̄jk

∂̄Ψ̄j1 ∂̄Ψ̄j2 . . . ∂̄Ψ̄jk

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

∂̄k−1Ψ̄j1 ∂̄k−1Ψ̄j2 . . . ∂̄k−1Ψ̄jk

∣∣∣∣∣∣∣∣∣∣∣

.

(5.44)

The consistency condition is that the product of Wronskians of holomorphic and antiholo-

morphic solutions equals to unity

W[Ψ1, . . . ,Ψn]W[Ψ̄1, . . . , Ψ̄n] = 1. (5.45)

In the case of light exponentials, all currents in eq. (5.42) are equal to zero. In this case

functions Ψk will be the polynomial of degree n − 1

Ψk = a
(1)
k + a

(2)
k z +

a
(3)
k z2

2
+ · · · + a

(n)
k zn−1

n − 1
. (5.46)

The condition (5.45) transforms to SL(n,C) constraint for the matrix a
(j)
k

det




a
(1)
1 a

(2)
1 . . . a

(n)
1

a
(1)
2 a

(2)
2 . . . a

(n)
2

. . . . . . . . . . . . .

. . . . . . . . . . . . .

a
(1)
n a

(2)
n . . . a

(n)
n




= 1 (5.47)

Semiclassical limit of the correlation function of the light exponentials described by the

integral

1

Z0
〈Vbη1(z1, z̄1) . . . VbηN

(zN , z̄N )〉 →
∫ N∏

k=1

e(ηk ,φ(zk,z̄k))dΩ(a
(j)
k ), (5.48)

here dΩ(a
(j)
k ) is SL(n,C) invariant measure. We suppose to consider semiclassical calcula-

tions, which were done here, for n > 3 in other publication.

6. Minisuperspace limit

It is interesting to consider another limit of sl(n) TFT at b → 0. In this limit in the

Hamiltonian picture, associated with radial quantization,26 we take into account only the

zero mode dynamics (minisuperspace approach). In this approximation the state created

by the operator VQ+iPj
corresponds to the wave function

VQ+iPj
→ Ψ

(n)
Pj

(x),

26One should take the geometry of semi-infinite cylinder of circumference σ ∈ [0, 2π] (figure 3) and

consider the states on the circle.
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Figure 3: Cylinder used for minisuperspace approximation.

where x is a zero mode of the field ϕ. The function Ψ
(n)
P (x) (sl(n) Whittaker function)

satisfies Scrödinger equation
(
−∇2

x + 2πµ

n−1∑

i=1

eb(eix)

)
Ψ

(n)
P (x) = P 2Ψ

(n)
P (x), (6.1)

and in the region (ei, x) < 0 (Weyl chamber) possesses the asymptotic

Ψ
(n)
P (x) ∼ exp(i(P, x)) +

∑

ŝ∈W
Sŝ(P ) exp(i(ŝ(P ), x)), (6.2)

where the sum runs over all elements of the Weyl group W besides identical. The coefficients

Sŝ(P ) are known exactly [38] and can be obtained from the reflection amplitude (2.17) in

semiclassical limit b → 0

Sŝ(P ) =
∏

e>0

(πµ

b2

) i
2b

(ŝ(P )−P,e) Γ
(
− i(ŝ(P ),e)

b

)

Γ
(
− i(P,e)

b

) .

One can show, that conditions (6.1) and (6.2) determine the Whittaker function unambigu-

ously. The minisuperspace approximation is valid if Pj/b are fixed at the limit b → 0. If we

take α3 = ibq and Pk = bpk for k = 1, 2, then the minisuperspace limit of the three-point

correlation function (2.31) can be represented by the integral

C(Q + ibp1, Q + ibp2, ibq) −→
∫

d~x Ψ
(n)
bp1

(x)Ψ
(n)
bp2

(x)eib(q,x) . (6.3)

The theory of the sl(n) Whittaker functions has some long history [39]. In particular,

different explicit integral representations for these functions exist [40, 41] (we will use

here representation, which can be extracted from the paper [41]). All these functions

are build from the Macdonald function Kν(y) (which can be given by the integral (D.1))

by the recursive integral representation. To make sense the future statements we define

Ψ
(0)
P (x) = Ψ

(1)
P (x) = 1. It is useful also to introduce the variables

yk = b−1√πµeb(ek ,x)/2, (6.4)
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and new function Ψ̃
(n)
P (y1, . . . , yn−1) through the relation

Ψ
(n)
P (x) =

2n(n−1)/2

∏
e>0

Γ(−ib−1(P, e))

(πµ

b2

)−i (P,ρ)
b

n−1∏

k=1

(
yk

yn−k

) i(P,ωk−ωn−k)

2b

Ψ̃
(n)
P (y1, . . . , yn−1).

(6.5)

The recursive relation connects function Ψ̃
(n)
P with function Ψ̃

(n−2)
P ′

Ψ̃
(n)
P (y1, . . . , yn−1) = (6.6)

=

∫ ∞

0
. . .

∫ ∞

0
Ψ̃

(n−2)
P ′

(
y2

t1
t2

, y3
t2
t3

, . . . , yn−2
tn−3

tn−2

)
K i(P,e0)

b

(
2yn−1

√
(1 + t2n−2)

)
×

×
n−2∏

k=1

[
t
ib−1

Pk
j=1(P,en−j−ej)

k K i(P,e0)
b

(
2yk

√
(1 + t2k−1)(1 + t−2

k )

) ]
dt1
t1

. . .
dtn−2

tn−2
,

where by definition t0 = 0. Vector P ′ in eq. (6.6) defined in a following way. If vector P has

a components P1, P2, . . . , Pn−1 in the basis of fundamental weights of the Lie algebra sl(n)

(i. e. (P, ek) = Pk, where ek are the simple roots of sl(n)), then vector P ′ has components

P2, P3, . . . , Pn−2 in the basis of fundamental weights of the Lie algebra sl(n − 2) (i. e.

(P ′, ek) = Pk+1, where ek are the simple roots of sl(n − 2)). To clarify eq. (6.6) and

definition of the vector P ′ we give an expression for the function Ψ̃
(4)
P (y1, y2, y3) in the

appendix E (eq. (E.1)).

It is useful to introduce also Whittaker function in the momentum representation

Ψ̂
(n)
P (q) =

∫
Ψ

(n)
P (x)ei(q,x) d~x. (6.7)

The integral (6.3) describing the asymptotic of three-point correlation function transforms

to

C(Q + ibp1, Q + ibp2, ibq) →
1

(2π)n−1

∫
d~q′ Ψ̂(n)

bp1
(q′)Ψ̂(n)

bp2
(q − q′). (6.8)

Let us consider the simplest examples of sl(2) and sl(3) TFT here. For the sl(2) case

(Liouville theory) we derive from eq. (6.6)

Ψ
(2)
bp (x) =

2

Γ(−ip
√

2)

(πµ

b2

)− ip√
2 Kip

√
2

(
2b−1√πµe

bx√
2

)
, (6.9a)

Fourier-transformed Whittaker function can be easily find using eq. (D.3)

Ψ̂
(2)
bp (bq) =

1

b
√

2

(πµ

b2

)− i(p+q)√
2

Γ
(

i√
2
(q + p)

)
Γ

(
i√
2
(q − p)

)

Γ
(
−ip

√
2
) (6.9b)

The integral (6.3) in this case can be evaluated using the formula (D.4)
∫

dx Ψ
(2)
bp1

(x)Ψ
(2)
bp2

(x)eibs/
√

2x = (6.10)

=
4
√

2b−1

Γ(−ip1

√
2)Γ(−ip1

√
2)

(πµ

b2

)−i
“

p1+p2√
2

”

−is
∫ ∞

0
yisKip1

√
2(2y)Kip2

√
2(2y)

dy

y

=
1

b

(πµ

b2

)−i
“

p1+p2√
2

”

−is

∏
ε1=±

∏
ε2=± Γ

(
is
2 + ε1

ip1√
2

+ ε2
ip2√

2

)

Γ(is)Γ(−ip1

√
2)Γ(−ip2

√
2)

.
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This function coincides with minisuperspace limit of the three-point correlation function

for the sl(2) TFT.

In the sl(3) case we obtain from eq. (6.6) the expression for Whittaker function27

Ψ
(3)
bp (x) =

8
(πµ

b2

)−i(p,ρ)

∏
e>0 Γ(−i(p, e))

(
y1

y2

)i(p,ω1−ω2)

× (6.11a)

×
∫ ∞

0

dt

t
ti(p,e2−e1)Ki(p,e0)

(
2y1

√
1 + 1/t2

)
Ki(p,e0)

(
2y2

√
1 + t2

)

Fourier-transformed Whittaker function can be easily found using eqs. (D.3) and (D.5).

The result is expressed again in terms of gamma-functions [38]

Ψ̂
(3)
bp (bq) =

1

b2
√

3

(πµ
b2

)−i(p+q,ρ)

∏
e>0 Γ

(
−i(p, e)

)
∏3

k=1 Γ
(
i(q, ω1) + i(p, hk)

)
Γ
(
i(q, ω2) − i(p, hk)

)

Γ
(
i(q, ρ)

)

(6.11b)

The integral (6.3) is much more complicated in this case. It is better to write it in the

momentum representation. As a result, for the asymptotic of the three-point correlation

function in sl(3) TFT we obtain Barnes-like integral

C(Q + ibp1, Q + ibp2, ibq) −→
1

6π2b2

(πµ
b2

)−i(p1+p2+q,ρ)

∏
e>0 Γ

(
−i(p1, e)

)
Γ
(
−i(p2, e)

) × (6.12)

×
∫

d2q′

Γ
(
i(q′, ρ)

)
Γ
(
i(q − q′, ρ)

)
3∏

k=1

[
Γ
(
i(q′, ω1) + i(p1, hk)

)
Γ
(
i(q′, ω2) − i(p1, hk)

)
×

×Γ
(
i(q − q′, ω1) + i(p2, hk)

)
Γ
(
i(q − q′, ω2) − i(p2, hk)

)]
.

This integral can be calculated exactly in terms of gamma functions if q = sω1 or q = sω2,

as was first noticed in [43].

In the case of higher n, Whittaker function is more involved object. The problem of

finding the Fourier transform of the product of two Whittaker functions was considered

in [44]. The most general situation, when the answer can be expressed in terms of Gamma

functions, is q = sω1 or q = sωn−1. The generalization of the explicit sl(2) formula (6.10)

for the case of general n has a form

∫
d~x Ψ

(n)
bp1

(x)Ψ
(n)
bp2

(x)eibs(ωn−1,x) = (6.13)

1

bn−1

(πµ

b2

)−i(s n−1
2

+(p1+p2,ρ))

∏
ij

Γ
(

is
n + i(p1, hi) + i(p2, hj)

)

Γ(is)
∏
e>0

Γ
(
−i(p1, e)

)
Γ
(
−i(p2, e)

) .

We note that expression (6.13) coincides exactly with the minisuperspace limit of the

three-point function (2.39).

27This function was firstly derived in ref. [42].
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7. Conclusion

In this paper we have considered in details particular examples of three-point correlation

functions 〈Vα1(z1, z̄1)Vα2(z2, z̄2)Vα3(z3, z̄3)〉 in sl(n) conformal Toda field theory, which can

be expressed in terms of known in mathematics special functions. If any vector parameter

α1, α2 or α3 is proportional to the first or to the last fundamental weights (ω1 or ωn−1) of

the Lie algebra sl(n), for example α3 = κωn−1, then three-point correlation function can be

expressed in terms product of so called Υ-functions (see eq. (2.39)). Unfortunately, general

situation is much more complicated. For example, if one shifts slightly parameter κωn−1 →
κωn−1 − bω1 then corresponding three-point correlation function can be expressed only in

terms of Coulomb integral (see eq. (3.47)) or equivalently in terms of higher hypergeometric

functions (3.48). It is difficult to expect that general three-point correlation function can

be expressed in terms of known functions.

As we see from the results of sections 4, 5 and 6, where the semiclassical and minisu-

perspace approaches to TFT were considered, three-point correlation function is already

nontrivial in these cases. For example, in ”heavy” semiclassical limit, developed in sec-

tion 4, a problem of finding it is rather difficult due to the presence of accessory parameters.

These accessory parameters disappear only for the case of the Lie algebra sl(2), which cor-

responds to the Liouville field theory. This is one of the reasons why the three-point

correlation function can be found in quantum LFT exactly. For sl(n) TFT with n > 2

there is no (to our knowledge) simple regular procedure to obtain accessory parameters.

In the ”light” semiclassical limit (section 5) and in the minisuperspace limit (section 6)

it is possible to derive the expression for the three-point correlation function in terms of

finite dimensional integrals. Generally speaking it is not evident, that in quantum case it

is also true. The only thing, which can be done, is to find all cases when the quantum

three-point correlation function can be expressed in terms of finite dimensional integrals.

We will study this problem in the second part of this paper [22].
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A. The Coulomb integrals

Here we will discuss the problem of calculation of the sl(n) Coulomb integrals. They appear

in the theory of massless n− 1 component scalar field ϕ, as expressions for the correlation

functions of the exponential fields Vα = e(α,ϕ). We will concentrate ourself on three-point

correlation functions

Is1...sn−1(α1, α2, α3) =
〈
Vα1(∞)Vα2(1)Vα3(0)

n−1∏

k=1

Qsk

k

〉
, (A.1)

here Qk is a screening field Qk =
∫

eb(ek ,ϕ)d2z and sk are some non-negative integers.

Correlation function (A.1) is non-zero only if the screening condition

α1 + α2 + α3 + b

n−1∑

k=1

skek = 2Q

is satisfied. In this case correlation function (A.1) can be rewritten using the Wick rules

Is1...sn−1(α1, α2, α3) = (A.2)
∫ n−1∏

k=1

dµsk
(tk)|~tk|−2b(α1,ek)|~tk − 1|−2b(α2,ek)D−2b2

sk
(tk)

n−2∏

l=1

|~tl − ~tl+1|2b2 ,

where Dsk
(tk) is defined by

Dsk
(tk) =

sk∏

i<j

|t(i)k − t
(j)
k |2. (A.3)

In eq. (A.2) we have used the notations ~tk = (t
(1)
k , . . . , t

(sk)
k ) with t

(j)
k being the coordinate

of the j-th screening eb(ek ,ϕ) and we denote

|~tk| =

sk∏

j=1

|t(j)k |; |~tk − 1| =

sk∏

j=1

|t(j)k − 1|; dµsk
(tk) =

1

πsksk!

sk∏

j=1

d2t
(j)
k ;

|~tk − ~tl| =

sk∏

i=1

sl∏

j=1

|t(i)k − t
(j)
l | if k 6= l (A.4)

We will study particular case of the integral (A.2), which corresponds to the value of

parameter α3 = κωn−1

Js1...sn−1(a1 . . . an−1|c) = (A.5)
∫

dµs1(t1) . . . dµsn−1(tn−1) |~tn−1|2c
n−1∏

k=1

|~tk − 1|2akD−2b2
sk

(tk)

n−2∏

l=1

|~tl − ~tl+1|2b2

with

c = −bκ, ak = −b(α2, ek). (A.6)
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This integral can be calculated using the following identity between integrals of the dimen-

sion 2m and 2n [45, 29, 30]

∫
dµn(w)Dn(w)

n∏

i=1

n+m+1∏

j=1

|wi − xj|2pj = (A.7)

n+m+1∏
i=1

γ(1 + pi)

γ(1 + n +
∑
i

pi)

∏

i<j

|xi − xj |2+2pi+2pj

∫
dµm(u)Dm(u)

m∏

i=1

n+m+1∏

j=1

|ui − xj |−2pj−2,

where Dn(t) is defined similar to eq. (A.3) and equals

Dn(t) =
∏

i<j

|ti − tj|2. (A.8)

Measure of integration is defined similar to eq. (A.4) and equal dµn(w) = 1
πnn!

∏n
j=1 d2wj .

Below we list the main steps of calculation. Using integral relation (A.7) function (A.5)

can be calculated as follows

• First, it is convenient to represent the factor D−2b2
s1

(t1) in eq. (A.5) as

D−2b2

s1
(t1) = Ds1(t1)D−1−2b2

s1
(t1) (A.9)

and substitute the factor D−1−2b2
s1

(t1) using eq. (A.7) with n = s1 − 1 and m = 0

D−1−2b2
s1

(t1) =
γ(−s1b

2)

γs1(−b2)

∫
Ds1−1(y1) |~y1 − ~t1|−2b2−2dµs1−1(y1). (A.10)

Note that the number of variables ~y1 is equal to s1 − 1.

• Second, the integral over variables ~t1 should be converted using eq. (A.7) to the form

∫
Ds1(t1) |~t1 − 1|2a1 |~t1 − ~y1|−2b2−2 |~t1 − ~t2|2b2dµs1(t1) =

γs1−s2−1(−b2)γ(1 + a1)

γ(2 + (s2 − s1 + 1)b2 + a1)
|~y1 − 1|−2b2+2a1 |~t2 − 1|2+2b2+2a1 D1+2b2

s2
(t2) ×

×D−1−2b2

s1−1 (y1)

∫
Ds2−1(y2) |~y2 − 1|−2a1−2 |~y1 − ~y2|2b2 |~y2 − ~t2|−2b2−2dµs2−1(y2).

The number of integrations over variables ~y2 is equal to s2 − 1. We note that factor

D−1−2b2

s1−1 (y1) in the r.h.s. of eq. (A.9) combines with a factor Ds1−1(y1) in eq. (A.10)

to the standart combination D−2b2

s1−1(y1) and interaction between s1 − 1 points ~y1 and

s2 − 1 points ~y2 has a standart form |~y1 − ~y2|2b2 .

• Third, we note that the factor D1+2b2
s2

(t2), appearing after the second step, combines

with the factor D−2b2
s2

(t2) in eq. (A.5). Hence we can take the integral over variables
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~t2 in a way similar to the second step
∫

Ds2(t2) |~t2 − 1|2+2b2+2a1+2a2 |~t2 − ~y2|−2b2−2 |~t2 − ~t3|2b2dµs2(t2) = (A.11)

γs2−s3−1(−b2)γ(2 + b2 + a1 + a2)

γ(3 + (s3 − s2 + 2)b2 + a1 + a2)
|~y2 − 1|2+2a1+2a2 |~t3 − 1|4+4b2+2a1+2a2 D1+2b2

s3
(t3)

D−1−2b2

s2−1 (y2)

∫
Ds3−1(y3) |~y3−1|−2a1−2a2−2b2−4 |~y2−~y3|2b2 |~y3−~t3|−2b2−2dµs3−1(y3).

• Repeating this procedure we will lower the number of integrations at every step. The

last integral over variables ~tn−1 will be different from the integrals appearing at the

previous steps. Namely,
∫

Dsn−1(tn−1)|~tn−1|2c |~tn−1−1|2(n−2)(1+b2)+2
P

ak |~tn−1−~yn−1|−2b2−2dµsn−1(tn−1) =

γsn−1−1(−b2)
γ(1 + c)γ(n − 1 + (n − 2)b2 + a1 + · · · + an−1)

γ(n + c + a1 + · · · + an−1 + (n − 1 − sn−1)b2)
×

×D−1−2b2

sn−1
(yn−1)|~yn−1|2c−2b2 |~yn−1 − 1|2+2(n−3)(1+b2)+2(a1+···+an−1) (A.12)

• As result, we obtain the recurrent relation

Js1,...,sn−1(a1, a2, . . . , an−1|c) = (A.13)

K(a1, a2, . . . , an−1|c) Js1−1,...,sn−1−1(a1 − b2, a2 . . . an−1|c − b2)

with

K(a1, a2, . . . , an−1|c) =
γ(−s1b

2)

γn−1(−b2)

γ(1 + c)γ(n − 1 + a1 + · · · + an−1 + (n − 2)b2)

γ(n + c + a1 + · · · + an−1 + (n − 1 − sn−1)b2)

×
n−2∏

j=1

γ(j + a1 + · · · + aj + (j − 1)b2)

γ(1 + j + a1 + · · · + aj + (sj+1 − sj + j)b2)

We note, that if we substitute parameters ak and c from eq. (A.6), then the solution to the

recurrent relation (A.13) gives the expression for the integral (2.38). We note also, that

recurrent relation (A.13) can be used to continue integral Js1,...,sn−1(a1, a2, . . . , an−1|c) to

the non-integer values sk (it gives the expression for the three-point correlation (2.39)).

B. Simplification of the integral (5.18)

We start with the integral (5.18)

J(λ1, λ2;κ1, κ2;σ1, σ2) = 4σ1+σ2

∫
̺2δν2∆

Zλ1
1 Zλ2

2 Zκ1
3 Zκ2

4

d̺

̺

dν

ν
d2a d2b d2c, (B.1)

where Zk is given by eq. (5.18a). First, we use Feinman representation

1

Zλ1
1 Zλ2

2 Zκ1
3 Zκ2

4

=
Γ(υ)

Γ(λ1)Γ(λ2)Γ(κ1)Γ(κ2)

∫
τλ1ξλ2tκ1

(Z4 + Z3t + Z2ξ + Z1τ)υ
dτ

τ

dξ

ξ

dt

t
(B.2)
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with

υ = λ1 + λ2 + κ1 + κ2.

After that, we can calculate integral over d2a, d2b and over d̺ with the result

π24σ1+σ2
Γ(δ)Γ(υ − δ − 2)

Γ(λ1)Γ(λ2)Γ(κ1)Γ(κ2)

∫
r2+δ−υ r̄δ−1

P δ
ν2∆τλ1ξλ2tκ1 d2c

dν

ν

dτ

τ

dξ

ξ

dt

t
(B.3)

with

r = 1 + t + τ + ξ + τ |c|2 + t|c + ν|2, r̄ = (1 + ξ)r + tτν2;

P =
τ

4

(
1 + t

(
1 + |c + ν|2

))
+

tξ

4

(
ξ + τ

(
1 + |c|2

))
+

rξ

ν2

(
1 + |c +

ν

2
|2

)
.

The problem is that the quantity P is not quadratic in the variable c. In order to proceed

simplification, we use the following trick. We can multiply our expression (B.3) by

1 =
1

2π

∫ ∞

−∞

ds

s

∫ ∞

−∞
dp sip =

∫ ∞

−∞
ds δ(s − 1) (B.4)

and insert s somewhere into (B.3). More exactly, we will need to do that four times. We

just show the places of insertion of different sk

r → s4

(
ξ + τ(1 + |c|2)

)
+

(
1 + t(1 + |c + ν|2)

)
, r̄ → (1 + ξ)r + s2tτν2;

P → s1

(
τ

4

(
1 + t

(
1 + |c + ν|2

))
+ s3

tξ

4

(
ξ + τ

(
1 + |c|2

)))
+

rξ

ν2

(
1 + |c +

ν

2
|2

)
.

The integrals over sk can be calculated exactly (first over s1, second over s2 etc). After

that, the integrals over t, τ and ξ will be of the type (D.5) and also can be calculated. The

remaining integral over dν and d2c will be
∫

ν2(δ+∆−s1−s2)
(
1+ |c|2

)s1+s2−s3−λ1
(
1+ |c+ν|2

)s2+s3−κ1
(
1+

∣∣c+
ν

2

∣∣2
)s1−δ dν

ν
d2c. (B.5)

Using technique, described above, one can reduce integral (B.5) to one dimensional integral.

As result, the integral (B.1) can be reduced to five dimensional Barnes-like integral. By

using the first and the second Barnes lemmas (D.6) and (D.7), one can reduce it to three

dimensional integral (5.19).

The integral (5.19) can be also rewritten in a different form in terms of Tricomi func-

tions, which are defined by the integral representation

Ψ(a, c|x) =
1

Γ(a)

∫ ∞

0
dt e−xtta−1(1 + t)c−a−1. (B.6)

This function can be expressed through the confluent hypergeometric function

Φ(a, c|x) = 1 +
a

c
x +

1

2!

a(a + 1)

c(c + 1)
x2 + . . . (B.7)

as

Ψ(a, c|x) =
Γ(1 − c)

Γ(a − c + 1)
Φ(a, c|x) +

Γ(c − 1)

Γ(a)
x1−c Φ(a − c + 1, 2 − c|x) (B.8)
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with Ψ(a, c; 0) = Γ(1−c)
Γ(a−c+1) . Tricomi function satisfies the following relation

Ψ(a, c|x) = x1−c Ψ(a − c + 1, 2 − c|x). (B.9)

The integral (5.19) can be rewritten as

J(λ1, λ2;κ1, κ2;σ1, σ2) = 4λ1+κ1+σ1−∆ × (B.10)

× Γ(λ1 + κ1 + σ1 − ∆ − 2)Γ(λ2 + κ2 + σ2 + ∆ − 2)

Γ(λ1)Γ(λ2)Γ(λ1 + λ2 − 1)Γ(κ1)Γ(κ2)Γ(κ1 + κ2 − 1)Γ(σ1)Γ(σ2)Γ(σ1 + σ2 − 1)
×

×
∫

du ds dy tλ1−1(1 − t)κ1−1 uλ1+κ1−∆−2(1 − u)λ2+κ2+∆−2 e−ssλ1+κ1−σ2−∆−1 ×

×F1(4t(1 − t)s)F2(sut)F3(su(1 − t)),

where

F1(x) = Γ(σ2)Γ(σ2 + ∆)Ψ(σ2 + ∆, 1 + ∆|x),

F2(x) = Γ(κ1 + κ2 − 1)Γ(σ1 + κ1 − ∆ − 1)Ψ(κ1 + κ2 − 1, 1 − σ1 + κ2 + ∆|x),

F3(x) = Γ(λ1 + λ2 − 1)Γ(σ1 + λ1 − ∆ − 1)Ψ(λ1 + λ2 − 1, 1 − σ1 + λ2 + ∆|x).

(B.11)

This form of the integral (5.18) is very convenient to obtain its limit at σ1 → −m and

σ2 → −n considered in section 5.

C. Properties of the sl(3) Coulomb integral

In this appendix we study the properties of the sl(3) integral

Ik,l(α1, α2, β1, β2) = (C.1)
∫ k∏

i=1

l∏

j=1

|ti − sj |2b2D−2b2

k (t)D−2b2

l (s)

k∏

i=1

|ti|2α1 |ti − 1|2β1d2ti

l∏

j=1

|sj|2α2 |sj − 1|2β2d2sj,

where Dk(t) is defined by eq. (A.3). Using the integral identity (A.7) one can show, that

function Ik,l(α1, α2, β1, β2) satisfies the set of functional relations, which are generated by

two basic relations (we suppose, that l ≥ k):

Ik,l(α1, α2, β1, β2) = Ξ
(1)
k,l (α1, α2, β1, β2)Ik,l(α1, β̃1, α̃2, β2), (C.2)

where β̃1 = β1 + (l − k)b2, α̃2 = α2 − (l − k)b2 and

Ξ
(1)
k,l (α1, α2, β1, β2) =

l−k−1∏

j=0

γ(1 + α2 − jb2)

γ(1 + β̃1 − jb2)
×

×
k−1∏

j=0

γ(2 + α1 + α2 − (j − 1)b2)

γ(2 + α1 + β̃1 − (j − 1)b2)

l−1∏

j=0

γ(2 + β1 + β2 − (j − 1)b2)

γ(2 + α̃2 + β2 − (j − 1)b2)

and by the relation

Ik,l(α1, α2, β1, β2) = Ξ
(2)
k,l (α1, α2, β1, β2) × (C.3)

×Ik,l(α1,−2 − α1 − α2 + (l − 2)b2, β1,−2 − β1 − β2 + (l − 2)b2)
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with

Ξ
(2)
k,l (α1, α2, β1, β2) =

l−1∏

j=0

γ(1 + α1 − jb2)γ(1 + β1 − jb2)γ(2 + α1 + α2 − (j − 1)b2)γ(2 + β1 + β2 − (j − 1)b2)

γ(2 + α1 + β1 − (l − k − 1 + j)b2)γ(3 + α1 + α2 + β1 + β2 − (k − 2 + j)b2)
.

Relations (C.2) and (C.3) can be used for the analytical continuation and sometimes for

the simplification of the integral (C.1).

Integral (C.1) can be calculated exactly if k = 0 or l = 0 and also if one of the

parameters αk or βk equals to zero (see appendix A). In the case k = 1 (or l = 1) it also

can be reduced to known functions. To show it we apply integral relation [29, 30]

1

πll!

∫ l∏

j=1

|sj|2α2 |sj − 1|2β2 |sj − t|2b2D−2b2

l (s)d2s1 . . . d2sl = (C.4)

l−2∏

j=0

γ(−(j + 2)b2)

γ(−b2)

γ(1 + α2 − jb2)γ(1 + β2 − jb2)

γ(2 + α2 + β2 − (l − 1 + j)b2)
×

× 1

π

∫
|u|2α2−2(l−1)b2 |u − 1|2β2−2(l−1)b2 |u − t|2lb2d2u.

Relation (C.4) allows to reduce integral (C.1) to the four-dimensional integral
∫

|t|2α1 |t − 1|2β1 |u|2α2−2(l−1)b2 |u − 1|2β2−2(l−1)b2 |u − s|2lb2 d2u d2s,

which can be expressed in terms hypergeometric function of the type (3, 2) using eq. (3.48).

For k > 1 integral (C.1) can be reduced to 4k-dimensional Coulomb integral. We will give

the explicit expression for this integral in ref. [22]. Here we give two different asymptotics

at b → 0 of the meromorphic function defined by the integral (C.1). First asymptotic is

(we assume that l ≥ k)

Ik,l(−λ1b
2,−λ2b

2,−κ1b
2,−κ2b

2) −→
b→0

(−πb2)k+l × (C.5)

× (−1)k(λ2)l−k(κ2)l−k

(λ1 + λ2 + κ1 + κ2 + l − 2)k(λ1 + κ1 + k − l − 1)k(λ2 + κ2 + l − k − 1)l
×

×
k∑

s1,s2,s3≥0

4−s1−s2−s3
(−k)s1+s2+s3(−l)s1+s2+s3(1−2k−λ1−κ1+s1+s2+s3)s1

s1!s2!s3!
×

×(λ1)k−s1−s3(κ1)k−s1−s2(λ1+κ1+k−l−1)s2+s3(3−λ1−λ2−κ1−κ2−k)k−s2−s3 ×
×(κ1 + κ2 − 1)s2(λ1 + λ2 − 1)s3(l − k + λ2)k−s2(l − k + κ2)k−s3.

Second asymptotic is

Ik,l(−1 − λ1b
2,−1 − λ2b

2,−1 − κ1b
2,−1 − κ2b

2) −→
b→0

(
− π

b2

)k+l
× (C.6)

×
k∑

s1=0

l∑

s2=0

Cs1
k Cs2

l

(−1 + λ1 + λ2 + l − s2)k−s1

(λ1)k−s1(λ2)l−s2(λ1 + λ2 − 1)k−s1

(−1 + κ1 + κ2 + s1)s2

(κ1)s1(κ2)s2(κ1 + κ2 − 1)s2

,

where Cj
k are the binomial coefficients.
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D. Useful formulae

Here we collect some basic facts concerning Macdonald function Kν(y)

• Integral representation

Kν(y) =
1

2

∫ ∞

0

dt

t
tν exp(−y(t + 1/t)/2). (D.1)

• Asymptotic formula

Kν(2y) → 1

2

(
Γ(−ν)yν + Γ(ν)y−ν

)
at y → 0 (D.2)

• Mellin transformation of single Macdonald function

∫ ∞

0
yµKν(2ay)

dy

y
=

1

4aµ
Γ

(
µ + ν

2

)
Γ

(
µ − ν

2

)
(D.3)

• Mellin transformation of the product of two Macdonald functions

∫ ∞

0
yλKµ(2ay)Kν(2cy)

dy

y
=

cν

8aν+λΓ(λ)
Γ

(
λ+µ+ν

2

)
Γ

(
λ+µ−ν

2

)
× (D.4)

×Γ

(
λ − µ + ν

2

)
Γ

(
λ − µ − ν

2

)
F

(
λ+µ+ν

2
λ−µ+ν

2
λ

∣∣∣∣1 − c2

a2

)
.

here F denotes the hypergeometric function of the type (2, 1).

Beta-like integral
∫ ∞

0

dt

t
tA (1 + t2)B =

1

2

Γ
(

A
2

)
Γ

(
−B − A

2

)

Γ(−B)
. (D.5)

Barnes first lemma

1

2πi

∫ i∞

−i∞
Γ(α + s)Γ(β + s)Γ(γ − s)Γ(δ − s) =

Γ(α + γ)Γ(α + δ)Γ(β + γ)Γ(β + δ)

Γ(α + β + γ + δ)
. (D.6)

Barnes second lemma states that

1

2πi

∫
Γ(α1 + s)Γ(α2 + s)Γ(α3 + s)Γ(1 − β1 − s)Γ(−s)ds

Γ(β2 + s)
= (D.7)

Γ(α1)Γ(α2)Γ(α3)Γ(1 − β1 + α1)Γ(1 − β1 + α2)Γ(1 − β1 + α3)

Γ(β2 − α1)Γ(β2 − α2)Γ(β2 − α3)

provided that β1 + β2 = α1 + α2 + α3 + 1.
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E. Example of application of the recursive relation (6.6)

In this appendix we explain how to use recursive relation (6.6). For example, using eq. (6.6)

one obtains for function Ψ̃
(4)
P (y1, y2, y3) exact expression

Ψ̃
(4)
P (y1, y2, y3) =

∫ ∞

0

∫ ∞

0
t
ib−1(P,e3−e1)
1 t

ib−1(P,e3−e1)
2 × (E.1)

×K i(P,e2)

b

(
2y2

t1
t2

)
K i(P,e0)

b

(
2y1

√
(1 + t−2

1 )

)
×

×K i(P,e0)
b

(
2y2

√
(1 + t21)(1 + t−2

2 )

)
K i(P,e0)

b

(
2y3

√
(1 + t22)

)
dt1
t1

dt2
t2

.

In eq. (E.1) we substitute

Ψ̃
(2)
P ′

(
y2

t1
t2

)
= K i(P,e2)

b

(
2y2

t1
t2

)
. (E.2)

As we see from eq. (E.2), it is convenient to think that P ′ = P , but vector P ′ lives on a

lattice with cutted-off ends. Symbolically it can be pictured as

s s ss s s s s ss s sp p pp p p

e1 e2 e3 en−3 en−2 en−1

- ss ss ss ssp p pp p p

e2 e3 en−3 en−2

Using function (E.1) we can reconstract function Ψ̃
(6)
P (y1, y2, y3, y4, y5) and so on.
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